如圖,四面體O-ABC中,
OA
=
a
,
OB
=
b
,
OC
=
c
D為BC的中點,E為AD的中點,則向量
OE
用向量
a
,
b
c
表示為( 。
A.
OE
=
1
2
a
+
1
2
b
+
1
2
c
B.
OE
=
1
2
a
+
1
4
b
+
1
4
c
C.
OE
=
1
4
a
+
1
4
b
+
1
4
c
D.
OE
=
a
+
1
4
b
+
1
4
c

因為D是BC的中點,E是AD的中點,
OD
=
1
2
(
OB
+
OC
)
,
OE
=
1
2
(
OA
+
OD
)
=
1
2
OA
+
1
4
(
OB
+
OC
)=
1
2
a
+
1
4
b
+
1
4
c

故選B.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知向量
(1)若x的值;
(2)函數(shù),若恒成立,求實數(shù)c的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點,,,,求點,及向量的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知△ABC的三個頂點坐標分別是A(4,1),B(3,4),C(-1,2),BD是∠ABC的平分線,求點D的坐標及BD的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知P是內一點,且滿足0,記、、的面積依次為、,則等于(     )
A.1:2:3B.1:4:9C.:1D.3:1:2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓x2+y2=9,從這個圓上任一點P向x軸作垂線PP′,點P′為垂足,點M在PP′上,并且
PM
=
1
2
MP′

(1)求點M的軌跡.
(2)若F1(-
5
,0)
,F2(
5
,0)
求|MF1||MF2|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知O為坐標原點,點A(x,y)與點B關于x軸對稱,
j
=(0,1)
,則滿足不等式
OA
2
+
j
AB
≤0
的點A的集合用陰影表示( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知圓的半徑為定長,是圓所在平面內一定點,是圓上任意一點,線段的垂直平分線與直線相交于點,當在圓上運動時,點的軌跡可能是下列圖形中的:               .(填寫所有可能圖形的序號)
①點;②直線;③圓;④拋物線;⑤橢圓;⑥雙曲線;⑦雙曲線的一支.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在平行六面體ABCD-A1B1C1D1中,用向量
AB
,
AD
AA1
來表示向量
AC1
( 。
A.
AC1
=
AB
-
AD
+
AA1
B.
AC1
=
AB
+
AD
+
AA1
C.
AC1
=
AB
+
AD
-
AA1
D.
AC1
=
AB
-
AD
-
AA1

查看答案和解析>>

同步練習冊答案