已知:平面α∥平面β,線段AB分別交α、β于點M、N;線段AD分別交α、β于點CD;線段BF分別交αβ于點F、E,且AM=m,BN=n,MN=pFMC面積=(m+p)(n+p),求:END的面積.

 

答案:
解析:

解:如圖,面AND分別交α、βMC,ND,因為αβ,

MCND,同理MFNE,得

FMCEND,

NDMC=(m+p)mENFMn(n+p)

SENDSFMC

SEND×SFMC

·(m+p)(n+p)=(m+p)2

∴△END的面積為(m+p)2平方單位.

 

 

 

 


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設V是已知平面M上所有向量的集合,對于映射f:V→V,a∈V,記a的象為f(a).若映射f:V→V滿足:對所有a、b∈V及任意實數(shù)λ,μ都有f(λa+μb)=λf(a)+μf(b),則f稱為平面M上的線性變換.下列命題中假命題是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等腰直角三角形,AC⊥AD,且AD=DE=2AB,F(xiàn)為CD中點.
(Ⅰ)求證:平面BCE⊥平面CDE;
(Ⅱ)求直線BF和平面BCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:數(shù)學教研室 題型:047

已知:平面α∥平面β,AB,CD是夾在這兩個平面之間的線段,且AE=EB,CG=GD,,如圖所示.

求證:EG∥平面α,EG∥平面β.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:047

已知:平面α∥平面β,AB,CD是夾在這兩個平面之間的線段,且AE=EB,CG=GD,,如圖所示.

求證:EG∥平面α,EG∥平面β.

查看答案和解析>>

科目:高中數(shù)學 來源:期末題 題型:單選題

已知兩個平面垂直,下列命題:
(1)一個平面內(nèi)已知直線必垂直于另一個平面內(nèi)的任意一條直線;
(2)一個平面內(nèi)的已知直線必垂直于另一個平面的無數(shù)條直線;
(3)一個平面內(nèi)的任一條直線必垂直于另一個平面;
(4)過一個平面內(nèi)任意一點作交線的垂線,則此垂線必垂直于另一個平面;
其中正確命題的個數(shù)是
[     ]
A.3
B.2
C.1
D.0

查看答案和解析>>

同步練習冊答案