設(shè)P為曲線y2=4(x-1)上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)(0,1)的距離與點(diǎn)P到y(tǒng)軸的距離之和的最小值為(    )。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x+
3
)2+y2=16
,點(diǎn)A(
3
,0)
,Q是圓上一動(dòng)點(diǎn),AQ的垂直平分線交CQ于點(diǎn)M,設(shè)點(diǎn)M的軌跡為E.
(Ⅰ)求E的方程;
(Ⅱ)設(shè)P為直線x=4上不同于點(diǎn)(4,0)的任意一點(diǎn),D,F(xiàn)分別為曲線E與x軸的左,右兩交點(diǎn),若直線DP與曲線E相交于異于D的點(diǎn)N,證明△NPF為鈍角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:⊙O方程為x2+y2=4,點(diǎn)P在圓上,點(diǎn)D在x軸上,點(diǎn)M在DP延長線上,⊙O交y軸于點(diǎn)N,
DP
ON
.且
DM
=
3
2
DP

(I)求點(diǎn)M的軌跡C的方程;
(II)設(shè)F1(0,
5
)、F2(0,-
5
),若過F1的直線交(I)中曲線C于A、B兩點(diǎn),求
F2A
F2B
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖:⊙O方程為x2+y2=4,點(diǎn)P在圓上,點(diǎn)D在x軸上,點(diǎn)M在DP延長線上,⊙O交y軸于點(diǎn)N,數(shù)學(xué)公式數(shù)學(xué)公式.且數(shù)學(xué)公式
(I)求點(diǎn)M的軌跡C的方程;
(II)設(shè)F1(0,數(shù)學(xué)公式)、F2(0,-數(shù)學(xué)公式),若過F1的直線交(I)中曲線C于A、B兩點(diǎn),求數(shù)學(xué)公式的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(04年全國卷III理)設(shè)P為曲線y2=4(x-1)上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)(0,1)的距離與點(diǎn)P到y(tǒng)軸的距離之和的最小值為_________

查看答案和解析>>

同步練習(xí)冊(cè)答案