已知函數(shù)數(shù)學(xué)公式
(I)判斷函數(shù)的奇偶性,并加以證明;
(II)用定義證明f(x)在(0,1)上是減函數(shù);
(III)函數(shù)f(x)在(-1,0)上是單調(diào)增函數(shù)還是單調(diào)減函數(shù)?(直接寫出答案,不要求寫證明過(guò)程).

證明:(I)函數(shù)為奇函數(shù)
(II)設(shè)x1,x2∈(0,1)且x1<x2
=
∵0<x1<x2<1,∴x1x2<1,x1x2-1<0,
∵x2>x1∴x2-x1>0.
∴f(x2)-f(x1)<0,f(x2)<f(x1
因此函數(shù)f(x)在(0,1)上是減函數(shù)
(III)f(x)在(-1,0)上是減函數(shù).
分析:(I)用函數(shù)奇偶性定義證明,要注意定義域.(II)先任取兩個(gè)變量,且界定大小,再作差變形看符號(hào),(III)由函數(shù)圖象判斷即可.
點(diǎn)評(píng):本題主要考查函數(shù)奇偶性和單調(diào)性定義,要注意奇偶性要先判斷,單調(diào)性變形要到位.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=e|lnx|+a|x-1|(a為實(shí)數(shù))
(I)若a=1,判斷函數(shù)f(x)在區(qū)間[1,+∞)上的單調(diào)性(不必證明);
(II)若對(duì)于任意的x∈(0,1),總有f(x)的函數(shù)值不小于1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=e|lnx|+a|x-1|(a為實(shí)數(shù))
(I)若a=1,判斷函數(shù)f(x)在區(qū)間[1,+∞)上的單調(diào)性(不必證明);
(II)若對(duì)于任意的x∈(0,1),總有f(x)的函數(shù)值不小于1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=e|lnx|+a|x-1|(a為實(shí)數(shù))
(I)若a=1,判斷函數(shù)f(x)在區(qū)間[1,+∞)上的單調(diào)性(不必證明);
(II)若對(duì)于任意的x∈(0,1),總有f(x)的函數(shù)值不小于1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年北京市朝陽(yáng)區(qū)高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=e|lnx|+a|x-1|(a為實(shí)數(shù))
(I)若a=1,判斷函數(shù)f(x)在區(qū)間[1,+∞)上的單調(diào)性(不必證明);
(II)若對(duì)于任意的x∈(0,1),總有f(x)的函數(shù)值不小于1成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案