【題目】2018115日至10日,首屆中國(guó)國(guó)際進(jìn)口博覽會(huì)在國(guó)家會(huì)展中心(上海)舉行,吸引過(guò)來(lái)58個(gè)“一帶一路”沿線國(guó)家的超過(guò)1000多家企業(yè)參展,成為共建“一帶一路”的又一個(gè)重要支撐。某企業(yè)為了參加這次盛會(huì),提升行業(yè)競(jìng)爭(zhēng)力,加大了科技投入;該企業(yè)連續(xù)6年來(lái)得科技投入(百萬(wàn)元)與收益(百萬(wàn)元)的數(shù)據(jù)統(tǒng)計(jì)如下:

根據(jù)散點(diǎn)圖的特點(diǎn),甲認(rèn)為樣本點(diǎn)分布在指數(shù)曲線的周?chē),?jù)此他對(duì)數(shù)據(jù)進(jìn)行了一些初步處理,如下表:

其中,

(1)()請(qǐng)根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程(保留一位小數(shù));

)根據(jù)所建立回歸方程,若該企業(yè)想在下一年的收益達(dá)到2億,則科技投入的費(fèi)用至少要多少(其中)?

(2)乙認(rèn)為樣本點(diǎn)分布在二次曲線的周?chē),并?jì)算得回歸方程為,以及該回歸模型的相關(guān)指數(shù),試比較甲乙兩位員工所建立的模型,誰(shuí)的擬合效果更好.

附:對(duì)于一組數(shù)據(jù),,……,其回歸直線方程的斜率和截距的最小二乘估計(jì)分別為,,相關(guān)指數(shù):

【答案】(1)(i;(ii;(2)甲建立的回歸模型擬合效果更好

【解析】

1)通過(guò),將非線性回歸問(wèn)題,轉(zhuǎn)化為線性回歸問(wèn)題,利用線性回歸直線方程計(jì)算公式計(jì)算出線性回歸直線,再還原為非線性回歸方程.并由此列不等式,求得科技投入的費(fèi)用至少需要的值.

2)計(jì)算出模型甲殘差平方和,由此計(jì)算出模型甲的相關(guān)指數(shù),比較甲乙兩個(gè)模型的相關(guān)指數(shù),由此確定擬合效果較好的模型.

(1)(,令

,則,根據(jù)最小二乘估計(jì)可知

從而,故回歸方程為,也即

)設(shè),解得=>

(2)先計(jì)算殘差:

,從而

即甲建立的回歸模型擬合效果更好.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),若方程有兩個(gè)不等實(shí)數(shù)根,,求實(shí)數(shù)的取值范圍,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的焦距為2,左頂點(diǎn)與上頂點(diǎn)連線的斜率為

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)過(guò)點(diǎn)Pm,0)作圓x2+y21的一條切線l交橢圓CM,N兩點(diǎn),當(dāng)|MN|的值最大時(shí),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)曲線 ,點(diǎn)的焦點(diǎn),過(guò)點(diǎn)作斜率為1的直線與曲線交于,兩點(diǎn),點(diǎn)的橫坐標(biāo)的倒數(shù)和為-1.

(1)求曲線的標(biāo)準(zhǔn)方程;

(2)過(guò)焦點(diǎn)作斜率為的直線交曲線,兩點(diǎn),分別以點(diǎn)為切點(diǎn)作曲線的切線相交于點(diǎn),過(guò)點(diǎn)軸的垂線交軸于點(diǎn),求三角形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱柱的底面為菱形,底面,,,,分別為的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)求證:平面平面;

(Ⅲ)若,求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形的對(duì)角線交于點(diǎn),,,點(diǎn),分別在上,,于點(diǎn).將沿折到的位置,.

(I)證明:平面平面

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是梯形,四邊形是矩形,且平面平面,是線段上的動(dòng)點(diǎn).

1)試確定點(diǎn)的位置,使平面,并說(shuō)明理由;

2)在(1)的條件下,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(Ⅰ)當(dāng)時(shí),求曲線處的切線方程;

(Ⅱ)求的單調(diào)區(qū)間;

(Ⅲ)設(shè),若對(duì)于任意,總存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了打好精準(zhǔn)扶貧攻堅(jiān)戰(zhàn)某村扶貧書(shū)記打算帶領(lǐng)該村農(nóng)民種植新品種蔬菜,可選擇的種植量有三種:大量種植,適量種植,少量種植.根據(jù)收集到的市場(chǎng)信息,得到該地區(qū)該品種蔬菜年銷(xiāo)量頻率分布直方圖如圖,然后,該扶貧書(shū)記同時(shí)調(diào)查了同類(lèi)其他地區(qū)農(nóng)民以往在各種情況下的平均收入如表1(表中收入單位:萬(wàn)元):

1

銷(xiāo)量

種植量

大量

8

-4

適量

9

7

0

少量

4

4

2

但表格中有一格數(shù)據(jù)被墨跡污損,好在當(dāng)時(shí)調(diào)查的數(shù)據(jù)頻數(shù)分布表還在,其中大量種植的100戶農(nóng)民在市場(chǎng)銷(xiāo)量好的情況下收入情況如表2

收入(萬(wàn)元)

11

11.5

12

12.5

13

13.5

14

14.5

15

頻數(shù)(戶)

5

10

15

10

15

20

10

10

5

(Ⅰ)根據(jù)題中所給數(shù)據(jù),請(qǐng)估計(jì)在市場(chǎng)銷(xiāo)量好的情況下,大量種植的農(nóng)民每戶的預(yù)期收益.(用以往平均收入來(lái)估計(jì));

(Ⅱ)若該地區(qū)年銷(xiāo)量在10千噸以下表示銷(xiāo)量差,在10千噸至30千噸之間表示銷(xiāo)量中,在30千噸以上表示銷(xiāo)量好,試根據(jù)頻率分布直方圖計(jì)算銷(xiāo)量分別為好、中、差的概率(以頻率代替概率);

(Ⅲ)如果你是這位扶貧書(shū)記,請(qǐng)根據(jù)(Ⅰ)(Ⅱ),從農(nóng)民預(yù)期收益的角度分析,你應(yīng)該選擇哪一種種植量.

查看答案和解析>>

同步練習(xí)冊(cè)答案