【題目】我國在2018年社保又出新的好消息,之前流動就業(yè)人員跨地區(qū)就業(yè)后,社保轉(zhuǎn)移接續(xù)的手續(xù)往往比較繁瑣,費時費力.社保改革后將簡化手續(xù),深得流動就業(yè)人員的贊譽.某市社保局從2018年辦理社保的人員中抽取300人,得到其辦理手續(xù)所需時間(天)與人數(shù)的頻數(shù)分布表:

時間

人數(shù)

15

60

90

75

45

15

1)若300名辦理社保的人員中流動人員210人,非流動人員90人,若辦理時間超過4天的人員里非流動人員有60人,請完成辦理社保手續(xù)所需時間與是否流動人員的列聯(lián)表,并判斷是否有95%的把握認為“辦理社保手續(xù)所需時間與是否流動人員”有關(guān).

列聯(lián)表如下

流動人員

非流動人員

總計

辦理社保手續(xù)所需

時間不超過4

辦理社保手續(xù)所需

時間超過4

60

總計

210

90

300

2)為了改進工作作風,提高效率,從抽取的300人中辦理時間為流動人員中利用分層抽樣,抽取12名流動人員召開座談會,其中3人要求交書面材料,3人中辦理的時間為的人數(shù)為,求出分布列及期望值.

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

【答案】1)列聯(lián)表見解析,有;(2)分布列見解析,.

【解析】

1)根據(jù)題意,結(jié)合已知數(shù)據(jù)即可填寫列聯(lián)表,計算出的觀測值,即可進行判斷;

2)先計算出時間在選取的人數(shù),再求出的可取值,根據(jù)古典概型的概率計算公式求得分布列,結(jié)合分布列即可求得數(shù)學期望.

1)因為樣本數(shù)據(jù)中有流動人員210人,非流動人員90人,所以辦理社保手續(xù)

所需時間與是否流動人員列聯(lián)表如下:

辦理社保手續(xù)所需時間與是否流動人員列聯(lián)表

流動人員

非流動人員

總計

辦理社保手續(xù)所需

時間不超過4

45

30

75

辦理社保手續(xù)所需

時間超過4

165

60

225

總計

210

90

300

結(jié)合列聯(lián)表可算得.

95%的把握認為“辦理社保手續(xù)所需時間與是否流動人員”有關(guān).

2)根據(jù)分層抽樣可知時間在可選9人,時間在可以選3名,

,

,

,,

可知分布列為

0

1

2

3

可知.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù),求的極值;

(2)證明:.

(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

(1)討論函數(shù)的單調(diào)性;

(2)當時,恒成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知m,n為常數(shù)),在處的切線方程為.

)求的解析式并寫出定義域;

)若任意,使得對任意上恒有成立,求實數(shù)a的取值范圍;

)若有兩個不同的零點,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,以橢圓E的長軸和短軸為對角線的四邊形的面積為.

1)求橢圓E的方程;

2)若直線與橢圓E相交于AB兩點,設(shè)P為橢圓E上一動點,且滿足O為坐標原點).時,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)、為兩個不重合的平面,則的充要條件是(

A.內(nèi)有無數(shù)條直線與平行B.、垂直于同一平面

C.平行于同一條直線D.內(nèi)有兩條相交直線與平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圓錐(其中為頂點,為底面圓心)的側(cè)面積與底面積的比是,則圓錐與它外接球(即頂點在球面上且底面圓周也在球面上)的體積比為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),直線與直線平行,且過坐標原點,圓的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系.

(1)求直線和圓的極坐標方程;

(2)設(shè)直線和圓相交于點、兩點,求的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】春節(jié)期間某商店出售某種海鮮禮盒,假設(shè)每天該禮盒的需求量在范圍內(nèi)等可能取值,該禮盒的進貨量也在范圍內(nèi)取值(每天進1次貨).商店每銷售1盒禮盒可獲利50元;若供大于求,剩余的削價處理,每處理1盒禮盒虧損10元;若供不應求,可從其它商店調(diào)撥,銷售1盒禮盒可獲利30.設(shè)該禮盒每天的需求量為盒,進貨量為盒,商店的日利潤為.

1)求商店的日利潤關(guān)于需求量的函數(shù)表達式;

2)試計算進貨量為多少時,商店日利潤的期望值最大?并求出日利潤期望值的最大值.

查看答案和解析>>

同步練習冊答案