【題目】已知集合A=[a﹣3,a],函數(shù) (﹣2≤x≤5)的單調(diào)減區(qū)間為集合B.
(1)若a=0,求(RA)∪(RB);
(2)若A∩B=A,求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:由題意知函數(shù)f(x)的定義域是:[﹣2,5],
則函數(shù)y=x2﹣4x=(x﹣2)2﹣4的減區(qū)間為[﹣2,2],
又 ,則函數(shù)f(x)的減區(qū)間[﹣2,2],即集合B=[﹣2,2],
當(dāng)a=0時(shí),A=[﹣3,0],
則RA=(﹣∞,﹣3)∪(0,+∞),(RB)=(﹣∞,﹣2)∪(2,+∞);
所以(RA)∪(RB)=(﹣∞,﹣2)∪(0,+∞)
(2)解:由A∩B=A得,AB=[﹣2,2],
所以 ,解得1≤a≤2,
即實(shí)數(shù)a的取值范圍為[1,2]
【解析】(1)根據(jù)二次函數(shù)、指數(shù)函數(shù)、復(fù)合函數(shù)的單調(diào)性求出集合B,由條件和補(bǔ)集的運(yùn)算求出RA、RB,由交集的運(yùn)算求出(RA)∪(RB);(2)由A∩B=A得AB,根據(jù)子集的定義和題意列出不等式組,求出實(shí)數(shù)a的取值范圍.
【考點(diǎn)精析】本題主要考查了交、并、補(bǔ)集的混合運(yùn)算的相關(guān)知識(shí)點(diǎn),需要掌握求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論中,正確的是( )
A.冪函數(shù)的圖象都通過點(diǎn)(0,0),(1,1)
B.冪函數(shù)的圖象可以出現(xiàn)在第四象限
C.當(dāng)冪指數(shù)α取1,3, 時(shí),冪函數(shù)y=xα是增函數(shù)
D.當(dāng)冪指數(shù)α=-1時(shí),冪函數(shù)y=xα在定義域上是減函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的三內(nèi)角A、B、C成等差數(shù)列,sinA、sinB、sinC成等比數(shù)列,則這個(gè)三角形的形狀是( )
A.直角三角形
B.鈍角三角形
C.等腰直角三角形
D.等邊三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A,B,C三點(diǎn)滿足 = + . (Ⅰ)求證:A,B,C三點(diǎn)共線;
(Ⅱ)已知A(1,cosx),B(1+sinx,cosx),x∈[0, ],f(x)= ﹣(2m2+ )| |的最小值為 ,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的個(gè)數(shù)是( )
①過異面直線a,b外一點(diǎn)P有且只有一個(gè)平面與a,b都平行;
②異面直線a,b在平面α內(nèi)的射影相互垂直,則a⊥b;
③底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐;
④直線a,b分別在平面α,β內(nèi),且a⊥b,則α⊥β.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AF=BF,EC∥FD,F(xiàn)D⊥底面ABCD,M是AB的中點(diǎn).
(1)求證:平面CFM⊥平面BDF;
(2)點(diǎn)N在CE上,EC=2,F(xiàn)D=3,當(dāng)CN為何值時(shí),MN∥平面BEF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果實(shí)數(shù)x,y滿足(x﹣2)2+y2=2,則 的范圍是( )
A.(﹣1,1)
B.[﹣1,1]
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣∞,﹣1]∪[1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,△ABC為正三角形,AB⊥AD,AC⊥CD,PA⊥平面ABCD,PC與平面ABCD所成角為45°
(1)若E為PC的中點(diǎn),求證:PD⊥平面ABE;
(2)若CD= ,求點(diǎn)B到平面PCD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=logax(a>0且a≠1)的圖象經(jīng)過點(diǎn) ,函數(shù)y=bx(b>0且b≠1)的圖象經(jīng)過點(diǎn) ,則下列關(guān)系式中正確的是( )
A.a2>b2
B.2a>2b
C.
D.(a >b )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com