【題目】已知ABC的內(nèi)角A,B,C的對邊分別為ab,c,2acosC=bcosC+ccosB

(1)求角C的大;

(2)若c=,a2+b2=10,求ABC的面積.

【答案】(1);(2)

【解析】

(1)由正弦定理得2sinAcosC=sinBcosC+sinCcosB,由A+B+C=π,求出cosC=,由此求出∠C.(2)由余弦定理得7=10﹣ab,從而ab=3,由此能求出△ABC的面積.

(1)∵△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,2acosC=bcosC+ccosB,

∴2sinAcosC=sinBcosC+sinCcosB,

∵A+B+C=π,∴2sinAcosC=sin(B+C)=sinA,

∴cosC=,∵0<C<π,∴∠C=

(2)∵c=,a2+b2=10,

∴由余弦定理得:c2=a2+b2﹣2abcosC,

7=10﹣ab,解得ab=3,

∴△ABC的面積S===

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是等比數(shù)列,Sn是數(shù)列{an}的前n項和,a1b1=1,S2.

(1)若b2a1,a3的等差中項,求數(shù)列{an}與{bn}的通項公式;

(2)若an∈N,數(shù)列{}是公比為9的等比數(shù)列,求證:+…+.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線y2=2px(p>0)的焦點為F,A(x1,y1),B(x2,y2)是過F的直線與拋物線的兩個交點,求證:

(1)y1y2=-p2;(2)為定值;

(3)以AB為直徑的圓與拋物線的準線相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC中,AC= ,BC= ,△ABC的面積為 ,若線段BA的延長線上存在點D,使∠BDC= ,則CD=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,傾斜角為α(α≠ )的直線l的參數(shù)方程為 (t為參數(shù)).以坐標原點為極點,以x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程是ρcos2θ﹣4sinθ=0.
(I)寫出直線l的普通方程和曲線C的直角坐標方程;
(Ⅱ)已知點P(1,0).若點M的極坐標為(1, ),直線l經(jīng)過點M且與曲線C相交于A,B兩點,設(shè)線段AB的中點為Q,求|PQ|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足(2a+b)cosC+ccosB=0.
(Ⅰ)求角C的大。
(Ⅱ)求sinAcosB的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=aex﹣x(a∈R),其中e為自然對數(shù)的底數(shù),e=2.71828…
(Ⅰ)判斷函數(shù)f(x)的單調(diào)性,并說明理由
(Ⅱ)若x∈[1,2],不等式f(x)≥ex恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面四邊形ABCD中,已知∠A= ,∠B= ,AB=6,在AB邊上取點E,使得BE=1,連接EC,ED.若∠CED= ,EC=

(Ⅰ)求sin∠BCE的值;
(Ⅱ)求CD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某海警基地碼頭O的正東方向40海里處有海礁界碑M,過點M且與OM即北偏西)的直線l在在此處的一段為領(lǐng)海與公海的分界線(如圖所示),在碼頭O北偏東方向領(lǐng)海海面上的A處發(fā)現(xiàn)有一艘疑似走私船(可疑船)停留. 基地指揮部決定在測定可疑船的行駛方向后,海警巡邏艇從O處即刻出發(fā),按計算確定方向以可疑船速度的2倍航速前去攔截,假定巡邏艇和可疑船在攔截過程中均未改變航向航速,將在P處恰好截獲可疑船.

(1)如果OA相距6海里,求可疑船被截獲處的點P的軌跡;

(2)若要確保在領(lǐng)海內(nèi)捕獲可疑船(即P不能在公海上).則、之間的最大距離是多少海里?

查看答案和解析>>

同步練習冊答案