某校要從4名教師中選派3名參加省骨干教師3期培訓(xùn),各期只派1名.由于工作上的原因,甲、乙兩名老師不能參加第一期的培訓(xùn),則不同選派方法有(  )種.
A、8B、12C、24D、48
考點(diǎn):計(jì)數(shù)原理的應(yīng)用
專(zhuān)題:排列組合
分析:第一步派教師第1培訓(xùn)的方法有C21 種,第二步再參加其余2期培訓(xùn)的方法有 A32 種,由分步計(jì)數(shù)原理求得結(jié)果.
解答: 解:派教師參加第1期培訓(xùn)的方法有C21 種,派教師參加其余2期培訓(xùn)的方法有 A32 種,
由分步計(jì)數(shù)原理可得不同的選派方式有 C21•A32=12種,
故選.B.
點(diǎn)評(píng):本題主要考查排列與組合及分步計(jì)數(shù)原理,排列數(shù)公式、組合數(shù)公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A1,A2,A3,A4是平面直角坐標(biāo)系中兩兩不同的四點(diǎn),若
A1A3
A1A2
(λ∈R),
A1A4
A1A2
(μ∈R),且
1
λ
+
1
μ
=2
,則稱(chēng)A3,A4調(diào)和分割A(yù)1,A2,已知點(diǎn)C(c,0),D(d,0)(c,d∈R)調(diào)和分割點(diǎn)A(0,0),B(1,0),則下面說(shuō)法正確的是( 。
A、C可能是線(xiàn)段AB的中點(diǎn)
B、D可能是線(xiàn)段AB的中點(diǎn)
C、C,D可能同時(shí)在線(xiàn)段AB上
D、C,D不可能同時(shí)在線(xiàn)段AB的延長(zhǎng)線(xiàn)上

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù) ①y=x+
1
x
(x≥2);②y=tanx+
1
tanx
;③y=x-3+
1
x-3
;④y=
x2+2
+
1
x2+2
.其中最小值為2的有(  )
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(0,-3),B(2,3),直線(xiàn)x+4y-1=0過(guò)拋物線(xiàn)y=ax2的焦點(diǎn),動(dòng)點(diǎn)P在拋物線(xiàn)上,則△PAB面積的最小值是( 。
A、
3
4
B、
5
6
C、
4
5
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=1-ex,則f′(0)=( 。
A、0B、-1C、eD、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線(xiàn)y=x3+x-2上點(diǎn)P0處的切線(xiàn)斜率為4,則點(diǎn)P0的一個(gè)坐標(biāo)是(  )
A、(0,-2)
B、(1,1)
C、(-1,-4)
D、(1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在區(qū)間D上的函數(shù),任給x1,x2∈D,且x1≠x2,都有f(
x1+x2
2
)>
f(x1)+f(x2)
2
,則稱(chēng)函數(shù)f(x)為區(qū)間D上的嚴(yán)格凸函數(shù).現(xiàn)給出下列命題:
①函數(shù)y=log2x與函數(shù)y=-x2在區(qū)間(0,+∞)上均為嚴(yán)格凸函數(shù);
②函數(shù)y=2x與y=tanx在(-1,1)均不為嚴(yán)格凸函數(shù);
③一定存在實(shí)數(shù)k,使得函數(shù)y=x+
k
x
在區(qū)間(-∞,0)上為嚴(yán)格凸函數(shù).
其中正確的命題個(gè)數(shù)為( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2+ax-lnx(a∈R).
(Ⅰ)若a=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間(0,1]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅲ)過(guò)坐標(biāo)原點(diǎn)O作曲線(xiàn)y=f(x)的切線(xiàn),證明:切線(xiàn)有且僅有一條,且切點(diǎn)的橫坐標(biāo)恒為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市居民2009~2013年貨幣收入x與購(gòu)買(mǎi)商品支出Y的統(tǒng)計(jì)資料如下表所示:
( 單 位:億元)
年份 2009 2010 2011 2012 2013
貨幣收入x 40 42 46 47 50
購(gòu)買(mǎi)商品支出Y 33 34 37 40 41
(Ⅰ)畫(huà)出散點(diǎn)圖,判斷x與Y是否具有相關(guān)關(guān)系;
(Ⅱ)已知
b
=0.84,請(qǐng)寫(xiě)出Y對(duì)x的回歸直線(xiàn)方程y=
b
x+
a
;并估計(jì)貨幣收入為52(億元)時(shí),購(gòu)買(mǎi)商品支出大致為多少億元?

查看答案和解析>>

同步練習(xí)冊(cè)答案