【題目】為了配合新冠疫情防控,某市組織了以停課不停學,成長不停歇為主題的空中課堂,為了了解一周內(nèi)學生的線上學習情況,從該市中抽取1000名學生進行調(diào)査,根據(jù)所得信息制作了如圖所示的頻率分布直方圖.

1)為了估計從該市任意抽取的3名同學中恰有2人線上學習時間在[200,300)的概率,特設(shè)計如下隨機模擬的方法:先由計算器產(chǎn)生09之間取整數(shù)值的隨機數(shù),依次用0,1,2,3…9的前若干個數(shù)字表示線上學習時間在[200,300)的同學,剩余的數(shù)字表示線上學習時間不在[200,300)的同學;再以每三個隨機數(shù)為一組,代表線上學習的情況.

假設(shè)用上述隨機模擬方法已產(chǎn)生了表中的30組隨機數(shù),請根據(jù)這批隨機數(shù)估計概率的值;

907 966 191 925 271 569 812 458 932 683 431 257 027 556

438 873 730 113 669 206 232 433 474 537 679 138 602 231

2)為了進一步進行調(diào)查,用分層抽樣的方法從這1000名學生中抽出20名同學,在抽取的20人中,再從線上學習時間[350,450)(350分鐘至450分鐘之間)的同學中任意選擇兩名,求這兩名同學來自同一組的概率.

【答案】(1)0.4;(2)0.4

【解析】

1)首先根據(jù)頻率分布直方圖求得線上學習時間在的頻率為;按照隨機模擬方法產(chǎn)生組隨機數(shù),讀取名同學中恰有人線上學習時間在的頻數(shù)為,最后根據(jù)古典概型概率公式求得該市名同學中恰有人線上學習時間在的概率為.

2)先從人中抽取人,利用分層抽樣確定出中有人,中有.列舉出所有基本樣本事件和兩名同學來自同一組這一事件包含的基本事件個數(shù),利用古典概率公式求得概率為.

解:(1)由頻率分布直方圖可知,線上學習時間在[200,300)的頻率為,所以可以用數(shù)字0,1,2,3表示線上學習時間在[200,300)的同學,數(shù)字4,5,6,7,8,9表示線上學習時間不在[200,300)的同學;觀察上述隨機數(shù)可得,3名同學中恰有2人線上學習時間在[200,300)的有191,271,932,812,431,393,027,730,206,433,138,602,共有12個.而基本事件一共有30個,根據(jù)古典概型的定義可知該市3名同學中恰有2人線上學習時間在[200,300)的概率為

2)抽取的20人中線上學習時間在[350,450)的同學有人,其中線上學習時間在[350,400)的同學有三名設(shè)為,線上學習時間在[400,450)的同學有兩名設(shè)為,從5名同學中任取2人的基本事件空間為,共有10個樣本點;用表示兩名同學來自同一組這一事件,則,共有4個樣本點,所以

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓M的圓心在直線上,與直線相切,截直線所得的弦長為6.

1)求圓M的方程;

2)過點的兩條成角的直線分別交圓MA,CB,D,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中,選項正確的是(

A. 在回歸直線中,變量時,變量的值一定是15

B. 兩個變量相關(guān)性越強,則相關(guān)系數(shù)就越接近于1

C. 在殘差圖中,殘差點比較均勻落在水平的帶狀區(qū)域中即可說明選用的模型比較合適,與帶狀區(qū)域的寬度無關(guān)

D. 若某商品的銷售量(件)與銷售價格(元/件)存在線性回歸方程為,當銷售價格為10元時,銷售量為100件左右

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中, ,且平面, 為棱的中點.

(1)求證: ∥平面;

(2)求證:平面平面;

(3)當四面體的體積最大時,判斷直線與直線是否垂直,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形為菱形 , 平面, , 中點.

(1)求證: ∥平面;

(2)求證: ;

(3)若為線段上的點,當三棱錐的體積為時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的中點.

1)若,求向量與向量的夾角的余弦值;

2)若是線段上任意一點,且,求的最小值;

3)若點內(nèi)一點,且,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

(1)當=-1時,求的單調(diào)區(qū)間及值域;

(2)若在()上為增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), 的導數(shù),若存在,使得成立,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 有兩個不同的零點.

(1)求的取值范圍;

(2)設(shè) 的兩個零點,證明: .

查看答案和解析>>

同步練習冊答案