Loading [MathJax]/jax/output/CommonHTML/jax.js
13.已知函數(shù)f(x)=2cosxsin(x-π6)+12
(1)求函數(shù)f(x)的對(duì)稱軸方程;
(2)若方程sin2x+2|f(x+π12)|-m+1=0在x∈[-π3π2]上有三個(gè)實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

分析 (1)利用差角的正弦公式、二倍角公式、輔助角公式,化簡(jiǎn)函數(shù),即可求函數(shù)f(x)的對(duì)稱軸方程;
(2)方程sin2x+2|f(x+π12)|-m+1=0可化為方程sin2x+2|sin2x|=m-1.令g(x)={3sin2xx[0π2]sin2xx[π30,根據(jù)方程有三個(gè)實(shí)數(shù)解,則m-1=1或0<m-1<32,即可求實(shí)數(shù)m的取值范圍.

解答 解:(1)f(x)=2cosxsin(x-π6)+12=3sinxcosx-cos2x+12=32sin2x12cos2x=sin(2x-π6),
∴函數(shù)f(x)的對(duì)稱軸方程x=kπ2+π3,k∈Z;.…(7分)
(2)方程sin2x+2|f(x+π12)|-m+1=0可化為方程sin2x+2|sin2x|=m-1.
令g(x)={3sin2xx[0π2]sin2xx[π30…(10分) 
若方程有三個(gè)實(shí)數(shù)解,則m-1=1或0<m-1<32
∴m=2或1<m<1+32…(15分)

點(diǎn)評(píng) 本題考查三角函數(shù)的化簡(jiǎn),考查三角函數(shù)的圖象與性質(zhì),考查學(xué)生轉(zhuǎn)化問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=ax+1-2(a>0且a≠1)的圖象恒過(guò)定點(diǎn)A,設(shè)拋物線E:y2=4x上任意一點(diǎn)M.到準(zhǔn)線l的距離為d,則d+|MA|的最小值為5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)f(x)=2sin(180°-x)+cos(-x)-sin(450°-x)+cos(90°+x).
(1)若f(α)=23•α∈(0°,180°),求tanα;
(2)若f(α)=2sinα-cosα+34,求sinα•cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知cos(x-π4)=-135π4<x<7π4),則sin2x-cos2x=( �。�
A.4279B.4279C.4729D.4729

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)=sin(ωx)(ω為正整數(shù))在區(qū)間(-π6π12)上不單調(diào),則ω的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知圓O:x2+y2=2,直線l:y=kx-2.
(1)若直線l與圓O交于不同的兩點(diǎn)A,B,當(dāng)AOB=π2時(shí),求k的值;
(2)若k=12P是直線l上的動(dòng)點(diǎn),過(guò)P作圓O的兩條切線PC、PD,切點(diǎn)為C、D,探究:直線CD是否過(guò)定點(diǎn)?若過(guò)定點(diǎn)則求出該定點(diǎn),若不存在則說(shuō)明理由;
(3)若EF、GH為圓O:x2+y2=2的兩條相互垂直的弦,垂足為M122,求四邊形EGFH的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知角α的終邊過(guò)點(diǎn)P(-8m,-6sin30°),且cosα=-45,則m的值為12,sinα=-35

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知a=log36,b=1+3log3e,c=(23-1則a,b,c的大小關(guān)系為(  )
A.a>b>cB.b>a>cC.c>b>aD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)集合A={0,1,2},B={2,3},則A∪B=(  )
A.{0,1,2,3}B.{0,1,3}C.{0,1}D.{2}

查看答案和解析>>

同步練習(xí)冊(cè)答案