10.函數(shù)f(x)的定義域?yàn)閇-1,1],圖象如圖1所示;函數(shù)g(x)的定義域?yàn)閇-2,2],圖象如圖2所示,方程f[g(x)]=0有m個(gè)實(shí)數(shù)根,方程g[f(x)]=0有n個(gè)實(shí)數(shù)根,則m+n=14

分析 結(jié)合函數(shù)圖象可知,若f(g(x))=0,則g(x)=-1或g(x)=0或g(x)=1;若g(f(x))=0,則f(x)=-1.5或f(x)=1.5或f(x)=0;從而再結(jié)合圖象求解即可.

解答 解:由圖象可知,
若f(g(x))=0,則g(x)=-1或g(x)=0或g(x)=1;
由圖2知,g(x)=-1時(shí),x=-1或x=1;
g(x)=0時(shí),x的值有3個(gè);g(x)=1時(shí),x=2或x=-2;
g(x)=-1時(shí),x=1或x=-1.
故m=7;
若g(f(x))=0,則f(x)=-1.5或f(x)=1.5或f(x)=0;
由圖1知,f(x)=1.5與f(x)=-1.5各有2個(gè);
f(x)=0時(shí),x=-1,x=1或x=0,故n=7;
故m+n=14;
故答案為14.

點(diǎn)評(píng) 本題考查了方程的根與函數(shù)的圖象的關(guān)系應(yīng)用及數(shù)形結(jié)合的思想應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足cos$\frac{A}{2}$=$\frac{2\sqrt{5}}{5}$,bccosA=3.
(Ⅰ)求△ABC的面積;
(Ⅱ)若$b+c=4\sqrt{2}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知三個(gè)函數(shù)f(x)=2x+x,g(x)=x-1,h(x)=log3x+x的零點(diǎn)依次為a,b,c,則( 。
A.a<b<cB.b<a<cC.c<a<bD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的短軸長為2$\sqrt{3}$,離心率e=$\frac{1}{2}$,
(1)求橢圓C的標(biāo)準(zhǔn)方程:
(2)若F1、F2分別是橢圓C的左、右焦點(diǎn),過F2的直線l與橢圓C交于不同的兩點(diǎn)A、B,求△F1AB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lnx,x≥1}\\{1-\frac{x}{2},x<1}\end{array}\right.$,若F(x)=f[f(x)+1]+m有兩個(gè)零點(diǎn)x1,x2,則x1+x2的取值范圍是( 。
A.[4-2ln2,+∞)B.[1+$\sqrt{e}$,+∞)C.[4-2ln2,1+$\sqrt{e}$)D.(-∞,1+$\sqrt{e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若正數(shù)a,b滿足ab=a+b+3,則ab的取值范圍是( 。
A.(3,9]B.[9,+∞)C.[9,27]D.[27,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=cos2x的最小正周期為( 。
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,AB是圓O的直徑,直線CE和圓O相切于點(diǎn)C,AD⊥CE于D,若AD=1,∠ABC=30°,則圓O的面積是( 。
A.B.C.D.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),b=1,左右兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2.過右焦點(diǎn)F2且與x軸垂直的直線與橢圓C相交M,N兩點(diǎn),且|MN|=1.
(1)求橢圓C的方程;
(Ⅱ) 設(shè)橢圓C的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足$\overrightarrow{PA}•\overrightarrow{AB}=m-4$,(m∈R)試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對(duì)稱點(diǎn)落在橢圓C上.

查看答案和解析>>

同步練習(xí)冊(cè)答案