【題目】已知函數(shù)f(x)=x﹣alnx,(a∈R).
(1)討論函數(shù)f(x)在定義域內的極值點的個數(shù);
(2)設g(x)=﹣ ,若不等式f(x)>g(x)對任意x∈[1,e]恒成立,求a的取值范圍.
【答案】
(1)解:f(x)=x﹣alnx,(x>0),
f′(x)=1﹣ = ,
①a≤0時,f′(x)>0,f(x)遞增,f(x)無極值;
②a>0時,令f′(x)>0,解得:x>a,令f′(x)<0,解得:0<x<a,
∴f(x)在(0,a)遞減,在(a,+∞)遞增,
f(x)有1個極小值點;
(2)解:若不等式f(x)>g(x)對任意x∈[1,e]恒成立,
令h(x)=f(x)﹣g(x),即h(x)最小值>0在[1,e]恒成立,
則h(x)=x﹣alnx+ (a∈R),
∴h′(x)=1﹣ ﹣ = ,
①當1+a≤0,即a≤﹣1時,在[1,e]上為增函數(shù),f(x)min=f(1)=1+1+a>0,
解得:a>﹣2,即﹣2<a≤﹣1,
當a>﹣1時
①當1+a≥e時,即a≥e﹣1時,f(x)在[1,e]上單調遞減,
∴f(x)min=f(e)=e+ ﹣a>0,解得a< ,
∵ >e﹣1,
∴e﹣1≤a< ;
②當0<1+a≤1,即﹣1<a≤0,f(x)在[1,e]上單調遞增,
∴f(x)min=f(1)=1+1+a>0,
解得a>﹣2,故﹣2<a<﹣1;
③當1<1+a<e,即0<a<e﹣1時,f(x)min=f(1+a),
∵0<ln(1+a)<1,
∴0<aln(1+a)<a,
∴f(1+a)=a+2﹣aln(1+a)>2,此時f(1+a)>0成立,
綜上,﹣2<a< 時,不等式f(x)>g(x)對任意x∈[1,e]恒成立
【解析】(1)先求導,再分類討論,得到函數(shù)的單調區(qū)間,從而求出函數(shù)的極值點的個數(shù);(2)由題意,只要求出函數(shù)f(x)min>0即可,利用導數(shù)和函數(shù)的最值的關系,進行分類討論,即可得到a的范圍.
【考點精析】認真審題,首先需要了解函數(shù)的極值與導數(shù)(求函數(shù)的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值),還要掌握函數(shù)的最大(小)值與導數(shù)(求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值)的相關知識才是答題的關鍵.
科目:高中數(shù)學 來源: 題型:
【題目】在區(qū)間D上,若函數(shù)y=f(x)為增函數(shù),而函數(shù) 為減函數(shù),則稱函數(shù)y=f(x)為區(qū)間D上的“弱增”函數(shù).則下列函數(shù)中,在區(qū)間[1,2]上不是“弱增”函數(shù)的為( )
A.
B.
C.g(x)=x2+1
D.g(x)=x2+4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列3個命題: 1)函數(shù)f(x)在x>0時是增函數(shù),x<0也是增函數(shù),所以f(x)是增函數(shù);
2)若函數(shù)f(x)=ax2+bx+2與x軸沒有交點,則b2﹣8a<0且a>0;
3)y=x2﹣2|x|﹣3的遞增區(qū)間為[1,+∞).
其中正確命題的個數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列{an}中,a1= ,且 =nan(n∈N+).
(1)寫出此數(shù)列的前4項;
(2)歸納猜想{an}的通項公式,并用數(shù)學歸納法加以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}: , + , + + , + + + ,…,那么數(shù)列{bn}={ }的前n項和為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2017年“十一”期間,高速公路車輛較多.某調查公司在一服務區(qū)從七座以下小型汽車中按進服務區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進行詢問調查,將他們在某段高速公路的車速()分成六段: , , , , , ,后得到如圖的頻率分布直方圖.
(1)求這40輛小型車輛車速的眾數(shù)和中位數(shù)的估計值;
(2)若從車速在的車輛中任抽取2輛,求車速在的車輛恰有一輛的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知關于x的不等式ax2﹣3x+2>0的解集為{x|x<1或x>b}
(1)求實數(shù)a、b的值;
(2)解關于x的不等式 >0(c為常數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=bax(a,b為常數(shù)且a>0,a≠1)的圖象經過點A(1,8),B(3,32)
(1)試求a,b的值;
(2)若不等式( )x+( )x﹣m≥0在x∈(﹣∞,1]時恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,正方體的棱長為1,B'C∩BC'=O,則AO與A'C'所成角的度數(shù)為( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com