6.已知c>0,設(shè)p:函數(shù)y=lg[(1-c)x-1]在其定義域內(nèi)為增函數(shù),q:不等式x+|x-2c|>1的解集為R,若“p∨q”為真,“p∧q”為假,求實數(shù)c的范圍.

分析 若“p∨q”為真,“p∧q”為假,則p真q假或p假q真,進(jìn)而可得答案.

解答 解:若命題p為真;
即函數(shù)y=lg[(1-c)x-1]在其定義域內(nèi)為增函數(shù),
則$\left\{\begin{array}{l}1-c>0\\ c>0\end{array}\right.$
解得:0<c<1.
設(shè)$f(x)=x+|x-2c|=\left\{\begin{array}{l}2x-2c,x≥2c\\ 2c,x<2c\end{array}\right.$
∴f(x)的最小值為2c.
若命題q為真,則2c>1,
∴$c>\frac{1}{2}$,
∵“p或q”為真,且“p且q為假”,
∴p真q假或p假q真,
若p真q假,則c的范圍是$(0,\frac{1}{2})$;
若p假q真,則c的范圍是[1,+∞),
綜上可得:c的范圍是$(0,\frac{1}{2})$∪[1,+∞).

點(diǎn)評 本題以命題的真假判斷與應(yīng)用為載體,考查了復(fù)合命題,復(fù)合函數(shù)的單調(diào)性,函數(shù)恒成立問題,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知銳角α終邊上一點(diǎn)$P(sin\frac{π}{5},cos\frac{π}{5})$,則α的值為$\frac{3π}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)為定義在R上的奇函數(shù),且f(x)在[0,+∞)上單調(diào)遞增,若f(a)<f(2a-1),則a的取值范圍是( 。
A.(-∞,1)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=x+2cosx在[0,π]上的最小值為$\frac{5π}{6}$-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F1的直線l交橢圓與兩點(diǎn)A,B,則|AF2|+|BF2|的最大值為( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{6}}}{3}$,焦距為$2\sqrt{2}$,拋物線${C_2}:{x^2}=2py(p>0)$的焦點(diǎn)F是橢圓C1的頂點(diǎn).
(I)求C1與C2′的標(biāo)準(zhǔn)方程;
(II)已知直線y=kx+m與C2相切,與C1交于P,Q兩點(diǎn),且滿足∠PFQ=90°,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)計算:${(-\frac{1}{2})^{-2}}-|{-1+\sqrt{3}}|+2sin{60^0}+{(π-4)^0}$
(2)解方程或方程組:①$\left\{\begin{array}{l}2x+y=0\\ 3x-2y=7\end{array}\right.$②${m^2}+(5\sqrt{3}tan{30^o})m-12cos{60^o}=0$
(3)解不等式組
求不等式組$\left\{\begin{array}{l}x-1≥1-x\\ x+8>4x-1.\end{array}\right.$的整數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.“$\frac{1}{x}<\frac{1}{2}$”是“x>2”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若實數(shù)x,y滿足$\left\{\begin{array}{l}x+y≥3\\ x-y≤3\\ x+2y≤6\end{array}\right.$,則(x+1)2+y2的最小值為( 。
A.$2\sqrt{2}$B.$\sqrt{10}$C.8D.10

查看答案和解析>>

同步練習(xí)冊答案