數(shù)列{}的前n項和為,.
(Ⅰ)設(shè),證明:數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列的前項和;
(Ⅲ)若,.求不超過的最大整數(shù)的值.
(Ⅰ)詳見解析;(Ⅱ);(Ⅲ).
【解析】
試題分析:(Ⅰ) 由,令可求,時,利用可得與之間的遞推關(guān)系,構(gòu)造等可證等比數(shù)列;(Ⅱ) 由(Ⅰ)可求,利用錯位相減法可求數(shù)列的和;(Ⅲ)由(Ⅰ)可求,進(jìn)而可求,代入P中利用裂項求和即可求解
試題解析:解:(Ⅰ) 因為,
所以 ① 當(dāng)時,,則, .(1分)
② 當(dāng)時,, .(2分)
所以,即,
所以,而, .(3分)
所以數(shù)列是首項為,公比為的等比數(shù)列,所以. .(4分)
(Ⅱ) 由(Ⅰ)得.
所以 ①
② .(6分)
②-①得: .(7分)
(8分)
(Ⅲ)由(Ⅰ)知 (9分)
而
, (11分)
所以,
故不超過的最大整數(shù)為. (14分) .
考點:1.遞推關(guān)系;2.等比數(shù)列的概念;3.數(shù)列求和.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
q |
x |
4Sn |
n+3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1-bn | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
a |
b |
a |
b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
an-1 | anan+1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com