如圖,已知P為⊙O外一點(diǎn),以PO為直徑作⊙M,⊙M交⊙O于A、B兩點(diǎn),求證:PA、PB是⊙O的切線.
考點(diǎn):圓的切線方程
專題:證明題,選作題
分析:連接OA,OB,利用A是以PO為直徑的⊙M上一點(diǎn),可得∠PAO=90°,根據(jù)切線的判定定理,即可得證.
解答: 證明:連接OA,OB,
∵A是以PO為直徑的⊙M上一點(diǎn),
∴∠PAO=90°,
根據(jù)切線的判定定理,可知PA是⊙O的切線.
同理PB是⊙O的切線.
點(diǎn)評(píng):本題考查圓的切線,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
-3+i
2+i
的虛部是(  )
A、1B、-iC、iD、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校隨機(jī)抽取部分新生調(diào)查其上學(xué)路上所需時(shí)間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中,上學(xué)路上所需時(shí)間的范圍是[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100].
(1)求直方圖中x的值;
(2)如果上學(xué)路上所需時(shí)間不少于60分鐘的學(xué)生可申請(qǐng)?jiān)趯W(xué)校住宿,請(qǐng)估計(jì)學(xué)校1000名新生中有多少名學(xué)生可以申請(qǐng)住宿;
(3)現(xiàn)有6名上學(xué)路上時(shí)間小于40分鐘的新生,其中2人上學(xué)路上時(shí)間小于20分鐘.從這6人中任選2人,設(shè)這2人中上學(xué)路上時(shí)間小于20分鐘人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,則復(fù)數(shù)1-2i的虛部為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一條直線過點(diǎn)A(3,-2),且橫截距與縱截距絕對(duì)值相等,求該直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓上一動(dòng)點(diǎn),點(diǎn)P是線段AM的垂直平分線與直線CM的交點(diǎn).
(1)求點(diǎn)P的軌跡曲線E的方程;
(2)設(shè)點(diǎn)P(x0,y0)是曲線E上任意一點(diǎn),寫出曲線E在點(diǎn)P(x0,y0)處的切線l的方程;(不要求證明)
(3)直線m過切點(diǎn)P(x0,y0)與直線l垂直,點(diǎn)C關(guān)于直線m的對(duì)稱點(diǎn)為D,證明:直線PD恒過一定點(diǎn),并求定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)是以π為周期的奇函數(shù),f(
π
3
)=1,求f(
3
)+f(
π
2
)+f(0)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

通過隨機(jī)詢問某校110名高中學(xué)生在購買食物時(shí)是否看營(yíng)養(yǎng)說明,得到如下的列聯(lián)表:
    總計(jì)  
  看營(yíng)養(yǎng)說明 50 30 80  
  不看營(yíng)養(yǎng)說明 10 20 30  
  總計(jì) 60 50 110  
P(k2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(1)從這50名女生中按是否看營(yíng)養(yǎng)說明采取分層抽樣,抽取一個(gè)容量為5的樣本,問樣本中看與不看營(yíng)養(yǎng)說明的女生各有多少名?
(2)根據(jù)列聯(lián)表,問有多大把握認(rèn)為“性別與在購買食物時(shí)看營(yíng)養(yǎng)說明”有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=4x3+k•
3x
+1(k∈R),若f(2)=8,則f(-2)的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案