已知A(1,1)是橢圓上一點,F1­,F2,是橢圓上的兩焦點,且滿足
(I)求橢圓方程; 
(Ⅱ)設(shè)C,D是橢圓上任兩點,且直線AC,AD的斜率分別為,若存在常數(shù)使,求直線CD的斜率.
(1)
所求橢圓方程!7分
(2)設(shè)直線AC的方程:,
點C,
同理


要使為常數(shù),+(1-C)=0,
得C=1,                            ………15分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的焦點在軸上,長軸長是短軸長的兩倍,則的值為   ( ) 
     B           C  2           D  4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分)橢圓C:長軸為8離心率
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過橢圓C內(nèi)一點M(2,1)引一條弦,使弦被點M平分,
求這條弦所在的直線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓過點,且離心率為.
(1)求橢圓的方程;
(2)為橢圓的左右頂點,點是橢圓上異于的動點,直線分別交直線兩點.證明:以線段為直徑的圓恒過軸上的定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

F1,F(xiàn)2是的左、右焦點,點P在橢圓上運動,則的最大值是
A.4B.5C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分13分)
已知橢圓的焦點為, 
離心率為,直線軸,軸分別交于點,
(Ⅰ)若點是橢圓的一個頂點,求橢圓的方程;
(Ⅱ)若線段上存在點滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的離心率,則的取值范圍為_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如果方程x2+ky2=2表示焦點在y軸的橢圓,那么實數(shù)k的取值范圍是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知、分別是橢圓的左、右焦點,點B是其上頂點,橢圓的右準(zhǔn)線與軸交于點N,且。
(1)求橢圓方程;
(2)直線與橢圓交于不同的兩點M、Q,若△BMQ是以MQ為底邊的等腰三角形,求的值。

查看答案和解析>>

同步練習(xí)冊答案