5.過拋物線y2=4x的焦點(diǎn)作一條直線與拋物線相交于A,B兩點(diǎn),它們的橫坐標(biāo)之和等于3,則這樣的直線( 。
A.有且僅有一條B.有且僅有兩條C.有無窮多條D.不存在

分析 過拋物線y2=4x的焦點(diǎn)作一條直線與拋物線相交于A、B兩點(diǎn),先看直線AB斜率不存在時,求得橫坐標(biāo)之和等于2,不符合題意;進(jìn)而設(shè)直線AB為y=k(x-1)與拋物線方程聯(lián)立消去y,進(jìn)而根據(jù)韋達(dá)定理表示出A、B兩點(diǎn)的橫坐標(biāo)之和,進(jìn)而求得k.得出結(jié)論.

解答 解:過拋物線y2=4x的焦點(diǎn)作一條直線與拋物線相交于A、B兩點(diǎn),
若直線AB的斜率不存在,則橫坐標(biāo)之和等于2,不適合.
故設(shè)直線AB的斜率為k,則直線AB為y=k(x-1)
代入拋物線y2=4x得,k2x2-2(k2+2)x+k2=0
∵A、B兩點(diǎn)的橫坐標(biāo)之和等于3,
∴$\frac{2({k}^{2}+2)}{{k}^{2}}$=3,解得:k2=4.
則這樣的直線有且僅有兩條,
故選:B.

點(diǎn)評 本題主要考查了拋物線的應(yīng)用.解題的時候要注意討論直線斜率不存在時的情況,以免遺漏.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)$f(x)=\frac{1}{2}{x^2}-(a+1)x+alnx,a>0$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)討論函數(shù)f(x)的零點(diǎn)個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在區(qū)間[0,1]上任取兩個實(shí)數(shù)a,b,則函數(shù)f(x)=x2+ax+b2無零點(diǎn)的概率為( 。
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{2}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某四面體的三視圖如圖所示,則此四面體的四個面中面積最大的面的面積等于$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.集合 A={x|-1<x<1},B={x|x(x-2)>0},那么 A∩B=( 。
A.{x|-1<x<0}B.{x|-1<x<2}C.{x|0<x<1}D.{x|x<0或x>2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={x|(x-1)(x-3)<0},B={x|2<x<4},則A∩B=(  )
A.{x|1<x<3}B.{x|1<x<4}C.{x|2<x<3}D.{x|2<x<4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC所在平面內(nèi)一點(diǎn)P,滿足$\overrightarrow{AP}=\frac{2}{5}\overrightarrow{AB}+\frac{1}{5}\overrightarrow{AC}$,延長BP交AC于點(diǎn)D,若$\overrightarrow{AD}=λ\overrightarrow{AC}$,則λ=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若集合A={x|x=2n,n∈Z},B={x|2<x≤6,x∈R},則A∩B={4,6}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列選項中,存在實(shí)數(shù)m使得定義域和值域都是(m,+∞)的函數(shù)是( 。
A.y=exB.y=lnxC.y=x2D.y=$\frac{x-1}{x+1}$

查看答案和解析>>

同步練習(xí)冊答案