8.定義f(x)={x}(其中{x}表示不小于x的最小整數(shù))為“取上整函數(shù)”,例如{2.1}=3,{4}=4.以下關(guān)于“取上整函數(shù)”性質(zhì)的描述,正確的是( 。
①f(2x)=2f(x);                         
②若f(x1)=f(x2),則x1-x2<1;
③任意x1,x2∈R,f(x1+x2)≤f(x1)+f(x2);
④$f(x)+f(x+\frac{1}{2})=f(2x)$.
A.①②B.①③C.②③D.②④

分析 充分理解“取上整函數(shù)”的定義.如果選項(xiàng)不滿足題意,只需要舉例說明即可

解答 解:對于①,當(dāng)x=1.4時,f(2x)=f(2.8)=3.2,f(1.4)=4.所以f(2x)≠2f(x);①錯.
對于②,若f(x1)=f(x2).當(dāng)x1為整數(shù)時,f(x1)=x1,此時x2>x1-1,即x1-x2<1.當(dāng)x1不是整數(shù)時,f(x1)=[x1]+1.[x1]表示不大于x1的最大整數(shù).x2表示比x1的整數(shù)部分大1的整數(shù)或者是和x1保持相同整數(shù)的數(shù),此時-x1-x2<1.故②正確.
對于③,當(dāng)x1,x2∈Z,f(x1+x2)=f(x1)+f(x2),當(dāng)x1,x2∉Z,f(x1+x2)<f(x1)+f(x2),故正確;
對于④,舉例f(1.2)+f(1.2+0.5)=4≠f(2.4)=3.故④錯誤.
故選:C.

點(diǎn)評 題適合充分利用選擇題的優(yōu)勢來解答填空題.用逆向思維處理題目會事半功倍,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若實(shí)數(shù)x,y滿足等式 x2+y2=4x-1,那么$\frac{y}{x}$的最大值為$\sqrt{3}$.x2+y2的最小值為7-4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C的長軸長為$2\sqrt{6}$,左焦點(diǎn)的坐標(biāo)為(-2,0);
(1)求C的標(biāo)準(zhǔn)方程;
(2)設(shè)與x軸不垂直的直線l過C的右焦點(diǎn),并與C交于A、B兩點(diǎn),且$|AB|=\sqrt{6}$,試求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知$\frac{\overline z}{1-i}=2+i$,則復(fù)數(shù)z的虛部為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.點(diǎn)M(20,40),拋物線y2=2px(p>0)的焦點(diǎn)為F,若對于拋物線上的任意點(diǎn)P,|PM|+|PF|的最小值為41,則p的值等于42或22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=2|x+2|-|x+1|,無窮數(shù)列{an}的首項(xiàng)a1=a.
(1)如果an=f(n)(n∈N*),寫出數(shù)列{an}的通項(xiàng)公式;
(2)如果an=f(an-1)(n∈N*且n≥2),要使得數(shù)列{an}是等差數(shù)列,求首項(xiàng)a的取值范圍;
(3)如果an=f(an-1)(n∈N*且n≥2),求出數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.直角三角形ABC中,AB=3,AC=4,BC=5,點(diǎn)M是三角形ABC外接圓上任意一點(diǎn),則$\overrightarrow{AB}•\overrightarrow{AM}$的最大值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若定義域均為D的三個函數(shù)f(x),g(x),h(x)滿足條件:對任意x∈D,點(diǎn)(x,g(x)與點(diǎn)(x,h(x)都關(guān)于點(diǎn)(x,f(x)對稱,則稱h(x)是g(x)關(guān)于f(x)的“對稱函數(shù)”.已知g(x)=$\sqrt{1-{x}^{2}}$,f(x)=2x+b,h(x)是g(x)關(guān)于f(x)的“對稱函數(shù)”,且h(x)≥g(x)恒成立,則實(shí)數(shù)b的取值范圍是[$\sqrt{5}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=\frac{{a{x^2}+1}}{bx+c}$,且f(1)=2,f(2)=3.
(I)若f(x)是偶函數(shù),求出f(x)的解析式;
(II)若f(x)是奇函數(shù),求出f(x)的解析式;
(III)在(II)的條件下,證明f(x)在區(qū)間$(0,\frac{1}{2})$上單調(diào)遞減.

查看答案和解析>>

同步練習(xí)冊答案