已知在△ABC中,∠A=120°且三邊長構成公差為2的等差數(shù)列,則∠A所對的邊a=
7
7
分析:由三邊長構成公差為2的等差數(shù)列設三角形的三邊分別為x-2,x,x+2,利用余弦定理表示出cosA,將設出三邊長及cosA的值代入求出x的值,即可確定出a.
解答:解:根據題意設三角形的三邊分別為x-2,x,x+2,
由余弦定理得cos120°=
x2+(x-2)2-(x+2)2
2x(x-2)
=-
1
2
,
整理得:x2-5x=0,即x(x-5)=0,
解得:x=5或x=0(舍去),
則∠A所對的邊a=5+2=7,
故答案為:7
點評:此題考查了余弦定理,以及等差數(shù)列的性質,熟練掌握余弦定理是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,點A、B的坐標分別為(-2,0)和(2,0),點C在x軸上方.
(Ⅰ)若點C的坐標為(2,3),求以A、B為焦點且經過點C的橢圓的方程;
(Ⅱ)若∠ACB=45°,求△ABC的外接圓的方程;
(Ⅲ)若在給定直線y=x+t上任取一點P,從點P向(Ⅱ)中圓引一條切線,切點為Q.問是否存在一個定點M,恒有PM=PQ?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,角A、B、C所對的邊分別為a、b、c;且a=3
3
,c=2,B=150°,求邊b的長和S△ABC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(sinx,
3
4
),
b
=(cos(x+
π
3
),1)函數(shù)f(x)=
a
b

(1)求f(x)的最值和單調遞減區(qū)間;
(2)已知在△ABC中,角A、B、C的對邊分別為a,b,c,f(A)=0,a=
3
,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,內角A,B,C所對的邊分別為a,b,c,且acosC+
3
2
c=b

(Ⅰ)求角A;
(Ⅱ)若a=l,且
3
c-2b=1
,求角B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•瀘州二模)已知在△ABC中,角A、B、C的對邊分別是a、b、c,且tanB=
2-
3
a2+c2-b2
BC
BA
=
1
2

(Ⅰ)求tanB的值;
(Ⅱ)求
2sin2
B
2
+2sin
B
2
cos
B
2
-1
cos(
π
4
-B)
的值.

查看答案和解析>>

同步練習冊答案