【題目】已知函數(shù),.
(1)討論函數(shù)的導(dǎo)函數(shù)的單調(diào)性;
(2)若函數(shù)在處取得極大值,求a的取值范圍.
【答案】(1)見解析;(2)
【解析】
(1)先求出,再對a分類討論求出函數(shù)的單調(diào)性;(2)由題得,再對a分類討論,根據(jù)函數(shù)在x=1處取得極大值,求出a的取值范圍.
(1)∵,∴,∴,
①當(dāng)時(shí),,∴函數(shù)在上單調(diào)遞增;
②當(dāng)時(shí),若,則;若,則,
∴函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.
綜上所述,當(dāng)時(shí).函數(shù)在上單調(diào)遞增,
當(dāng)時(shí),函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.
(2)∵,∴.
①由(1)知,當(dāng)時(shí),在上單調(diào)遞增,
若,則;若,則,
∴在上單調(diào)遞增,在上單調(diào)遞減,∴在處取得極小值;不合題意;
②當(dāng)時(shí),在上單調(diào)遞增,在上是單調(diào)遞減,∴,
∴在上單調(diào)遞減.∴無極值,不合題意;
③當(dāng)時(shí),,由(1)知,在上單調(diào)遞增,∵,
∴若,則;若,則,
∴在上單調(diào)遞增,在上單調(diào)遞減,∴在處取得極小值,不合題意;
④當(dāng)時(shí),,由(1)知,在上單調(diào)遞減,∵,
∴若,則;若,則.
∴在上單調(diào)遞增,在上單調(diào)遞減,
∴在處取得極大值,符合題意.
綜上所述,a的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解青少年的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對30名青少年進(jìn)行調(diào)查,得到如下列聯(lián)表:
常喝 | 不常喝 | 總計(jì) | |
肥胖 | 2 | ||
不肥胖 | 18 | ||
總計(jì) | 30 |
已知從這30名青少年中隨機(jī)抽取1名,抽到肥胖青少年的概率為.
(1)請將列聯(lián)表補(bǔ)充完整;(2)是否有99.5%的把握認(rèn)為青少年的肥胖與常喝碳酸飲料有關(guān)?
獨(dú)立性檢驗(yàn)臨界值表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中n=a+b+c+d.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,橢圓C過點(diǎn),兩個(gè)焦點(diǎn)為,,E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),直線EF的斜率為,直線l與橢圓C相切于點(diǎn)A,斜率為.
求橢圓C的方程;
求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是橢圓C:上的一點(diǎn),橢圓C的離心率與雙曲線的離心率互為倒數(shù),斜率為直線l交橢圓C于B,D兩點(diǎn),且A、B、D三點(diǎn)互不重合.
(1)求橢圓C的方程;
(2)若分別為直線AB,AD的斜率,求證:為定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知R為圓上的一動(dòng)點(diǎn),R在x軸,y軸上的射影分別為點(diǎn)S,T,動(dòng)點(diǎn)P滿足,記動(dòng)點(diǎn)P的軌跡為曲線C,曲線C與x軸交于A,B兩點(diǎn).
(1)求曲線C的方程;
(2)已知直線AP,BP分別交直線于點(diǎn)M,N,曲線C在點(diǎn)Р處的切線與線段MN交于點(diǎn)Q,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓F:和拋物線,過F的直線與拋物線和圓依次交于A、B、C、D四點(diǎn),求的值是( )
A.1B.2C.3D.無法確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,,斜率為的直線與拋物線交于兩點(diǎn).
(1)求的最小值;
(2)若,直線的斜率都存在,且;探究:直線是否過定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com