設(shè)函數(shù)f(x)=ax2+bx+1(a,b,為實(shí)數(shù)),F(xiàn)(x)=
f(x)(x>0)
-f(x)(x<0)

(1)若f(-1)=0且對(duì)任意實(shí)數(shù)x均有f(x≥0)成立,求F(x)表達(dá)式;
(2)在(1)的條件下,當(dāng)x∈[-3,3]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍.
分析:(1)由f(-1)=0,知b=a+1.由f(x)≥0恒成立,知△=b2-4a=(a+1)2-4a=(a-1)2≤0,由此能求出F(x)表達(dá)式.
(2)由f(x)=x2+2x+1,知g(x)=f(x)-kx=x2+(2-k)+1.由于g(x)在[-3,3]上是單調(diào)函數(shù),能求出實(shí)數(shù)k的取值范圍.
解答:解:(1)∵f(-1)=0,
∴b=a+1.
由f(x)≥0恒成立,
知△=b2-4a=(a+1)2-4a=(a-1)2≤0,
∴a=1.
從而f(x)=x2+2x+1.
∴F(x)=
(x+1)2(x>0)
-(x+1)2(x<0)

(2)由(1)可知f(x)=x2+2x+1,
∴g(x)=f(x)-kx=x2+(2-k)+1.
由于g(x)在[-3,3]上是單調(diào)函數(shù),
-
2-k
2
≤-3或-
2-k
2
≥3,
解得k≤-4或k≥8.
點(diǎn)評(píng):本昰考查函數(shù)的恒成立問(wèn)題,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax+
xx-1
(x>1),若a是從1,2,3三個(gè)數(shù)中任取一個(gè)數(shù),b是從2,3,4,5四個(gè)數(shù)中任取一個(gè)數(shù),求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax+b的圖象經(jīng)過(guò)點(diǎn)(1,7),又其反函數(shù)的圖象經(jīng)過(guò)點(diǎn)(4,0),求函數(shù)的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax+bx-cx,其中a,b,c是△ABC的三條邊,且c>a,c>b,則“△ABC為鈍角三角形”是“?x∈(1,2),使f(x)=0”( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•楊浦區(qū)一模)(文)設(shè)函數(shù)f(x)=ax+1-2(a>1)的反函數(shù)為y=f-1(x),則f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)設(shè)函數(shù)f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a為如圖所示的程序框圖中輸出的結(jié)果,則f(x)的展開(kāi)式中常數(shù)項(xiàng)是( 。
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步練習(xí)冊(cè)答案