如圖,在正三棱柱中,,分別為,的中點(diǎn).

(1)求證:平面;
(2)求證:平面平面.

(1)詳見解析;(2)詳見解析.

解析試題分析:(1)要證線面平行,需有線線平行.由分別為,的中點(diǎn),想到取的中點(diǎn);證就成為解題方向,這可利用平行四邊形來證明.在由線線平行證線面平行時(shí),需完整表示定理?xiàng)l件,尤其是線在面外這一條件;(2)要證面面垂直,需有線面垂直.由正三棱柱性質(zhì)易得底面側(cè)面,,從而側(cè)面,而,因此有線面垂直:.在面面垂直與線面垂直的轉(zhuǎn)化過程中,要注意充分應(yīng)用幾何體及平面幾何中的垂直條件.
試題解析:(1)連于點(diǎn),中點(diǎn), ,
中點(diǎn),,
,四邊形是平行四邊形,               4分
,又平面,平面,平面.  7分
(2)由(1)知,,中點(diǎn),所以,所以,  9分
又因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/02/7/noxtz.png" style="vertical-align:middle;" />底面,而底面,所以
則由,得,而平面,且
所以,                               12分
平面,所以平面平面.         14分
考點(diǎn):線面平行及面面垂直的判定定理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,底面為矩形,底面,、分別是中點(diǎn).

(1)求證:平面;
(2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,底面是邊長(zhǎng)為的正方形,,且

(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)棱上是否存在一點(diǎn),使直線與平面所成的角是?若存在,求的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,底面ABCD是邊長(zhǎng)為2的正方形,又PA=PD,∠APD=60°,E、G分別是BC、PE的中點(diǎn).

(1)求證:AD⊥PE;
(2)求二面角E-AD-G的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,平面,是矩形,,點(diǎn)的中點(diǎn),點(diǎn)是邊上的動(dòng)點(diǎn).

(Ⅰ)求三棱錐的體積;
(Ⅱ)當(dāng)點(diǎn)的中點(diǎn)時(shí),試判斷與平面的位置關(guān)系,并說明理由;
(Ⅲ)證明:無論點(diǎn)在邊的何處,都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,底面是矩形,四條側(cè)棱長(zhǎng)均相等且于點(diǎn).

(Ⅰ)求證:;
(Ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱錐中,平面,.

(Ⅰ)求證:;
(Ⅱ)設(shè)分別為的中點(diǎn),點(diǎn)為△內(nèi)一點(diǎn),且滿足
求證:∥面;
(Ⅲ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,等腰直角三角形的直角邊,沿其中位線將平面折起,使平面⊥平面,得到四棱錐,設(shè)、、、的中點(diǎn)分別為、、.

(1)求證:、、、四點(diǎn)共面;
(2)求證:平面平面;
(3)求異面直線所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,⊥面,為線段上的點(diǎn).

(Ⅰ)證明:⊥面 ;
(Ⅱ)若的中點(diǎn),求所成的角的正切值;
(Ⅲ)若滿足⊥面,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案