9.如圖,在平行四邊形ABCD中,$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}=\overrightarrow b,\overrightarrow{AN}=3\overrightarrow{NC}$,則$\overrightarrow{BN}$=( 。
A.$\frac{3}{4}\overrightarrow b+\frac{1}{4}\overrightarrow a$B.$\frac{1}{4}\overrightarrow b+\frac{3}{4}\overrightarrow a$C.$\frac{3}{4}\overrightarrow b-\frac{1}{4}\overrightarrow a$D.$\frac{1}{4}\overrightarrow b-\frac{3}{4}\overrightarrow a$

分析 由已知條件得$\overrightarrow{AN}=\frac{3}{4}\overrightarrow{AC}$,再求出$\overrightarrow{AC}$,$\overrightarrow{BN}$=$\overrightarrow{AN}-\overrightarrow{AB}$,則答案可求.

解答 解:∵$\overrightarrow{AN}=3\overrightarrow{NC}$,
∴$\overrightarrow{AN}=\frac{3}{4}\overrightarrow{AC}$,
又$\overrightarrow{AC}=\overrightarrow{AD}+\overrightarrow{CD}=\overrightarrow{a}+\overrightarrow$
則$\overrightarrow{BN}$=$\overrightarrow{AN}-\overrightarrow{AB}$=$\frac{3}{4}(\overrightarrow{a}+\overrightarrow)-\overrightarrow{a}$=$\frac{3}{4}\overrightarrow-\frac{1}{4}\overrightarrow{a}$.
故選:C.

點(diǎn)評(píng) 本題考查了用一組向量來(lái)表示一個(gè)向量,考查了向量的加減運(yùn)算,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的半焦距為c,(a,0)、(0,b)為直線l上兩點(diǎn),已知原點(diǎn)到直線l的距離為$\frac{{\sqrt{3}}}{4}$c,則雙曲線的離心率為( 。
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{3}$或2C.2D.2或 $\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.(1)已知a,b,c均為正實(shí)數(shù),且a+b+c=1,求證:$\frac{1}{a}$+$\frac{1}$+$\frac{1}{c}$≥9;
(2)已知a>b>c,且a+b+c=0,求證:$\sqrt{^{2}-ac}$<$\sqrt{3}$a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知:數(shù)列{an},{bn}中,a1=0,b1=1,且當(dāng)n∈N*時(shí),an,bn,an+1成等差數(shù)列,bn,an+1,bn+1成等比數(shù)列;
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求最小自然數(shù)k,使得當(dāng)n≥k時(shí),對(duì)任意實(shí)數(shù)λ∈[0,1],不等式(2λ-3)bn≥(2λ-4)an+λ-3恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.記${\left.{\overline{{a_n}{a_{n-1}}{a_{n-2}}…{a_1}{a_0}}}\right|_m}$=a0+a1×m+…+an-1×mn-1+an×mn,其中n≤m,m、n均為正整數(shù),ak∈{0,1,2,…,m-1}(k=0,1,2,…,n)且an≠0;
(1)計(jì)算${\left.{\overline{2016}}\right|_7}$=699;
(2)設(shè)集合A(m,n)=$\left\{{{{\left.{\left.x\right|x=\overline{{a_n}{a_{n-1}}{a_{n-2}}…{a_1}{a_0}}}\right|}_m}}\right\}$,則A(m,n)中所有元素之和為$\frac{{({{m^{n+1}}+{m^n}-1})({{m^{n+1}}-{m^n}})}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知橢圓$\frac{x^2}{4}$+y2=1,A,B,C,D為橢圓上四個(gè)動(dòng)點(diǎn),且AC,BD相交于原點(diǎn)O,設(shè)A(x1,y1),B(x2,y2)滿足$\frac{{{y_1}{y_2}}}{{\overrightarrow{OA}•\overrightarrow{OB}}}$=$\frac{1}{5}$.
(1)求證:$\overrightarrow{AB}$+$\overrightarrow{CD}$=$\overrightarrow{0}$;
(2)kAB+kBC的值是否為定值,若是,請(qǐng)求出此定值,并求出四邊形ABCD面積的最大值,否則,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=ln(x2+1),g(x)=$\frac{1}{{x}^{2}-1}$+a.
(1)若f(x)的一個(gè)極值點(diǎn)到直線l:2$\sqrt{2}$x+y+a+5=0的距離為1,求a的值;
(2)求方程f(x)=g(x)的根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1-|x|,(x≤1)}\\{{x}^{2}-4x+3,(x>1)}\end{array}\right.$,若f(f(m))≥0,則實(shí)數(shù)m的取值范圍是(  )
A.[-2,2]B.[-2,2]∪[4,+∞)C.[-2,2+$\sqrt{2}$]D.[-2,2+$\sqrt{2}$]∪[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=x+$\frac{1}{x}$.
(I)判斷函數(shù)的奇偶性,并加以證明;
(II)用定義證明f(x)在(0,1)上是減函數(shù);
(III)函數(shù)f(x)在(-1,0)上的單調(diào)性如何?(直接寫(xiě)出答案,不要求寫(xiě)證明過(guò)程).

查看答案和解析>>

同步練習(xí)冊(cè)答案