小波以游戲方式?jīng)Q定:是去打球、唱歌還是去下棋.游戲規(guī)則為:以O(shè)為起點,再從A1,A2,A3,A4,A5,A6(如圖)這6個點中任取兩點分別為終點得到兩個向量,記這兩個向量的數(shù)量積為X,若就去打球;若就去唱歌;若就去下棋.
(Ⅰ)寫出數(shù)量積X的所有可能取值;
(Ⅱ)分別求小波去下棋的概率和不去唱歌的概率.
(Ⅰ)的所有可能取值為;(Ⅱ)小波去下棋的概率為 ,小波不去唱歌的概率.
解析試題分析:(Ⅰ)的所有可能取值,即從,,,,,這六個向量中任取兩個,共有種,的所有可能取值為;(Ⅱ)數(shù)量積為-2的只有一種,數(shù)量積為-1的有六種,數(shù)量積為0的有四種,數(shù)量積為1的有四種,故所有可能的情況共有15種,利用古典概型概率公式計算.
科目:高中數(shù)學
來源:
題型:解答題
某市準備從7名報名者(其中男4人,女3人)中選3人到三個局任副局長.
科目:高中數(shù)學
來源:
題型:解答題
長沙市某中學在每年的11月份都會舉行“社團文化節(jié)”,開幕式當天組織舉行大型的文藝表演,同時邀請36名不同社團的社長進行才藝展示.其中有的社長是高中學生,的社長是初中學生,高中社長中有是高一學生,初中社長中有是初二學生.
科目:高中數(shù)學
來源:
題型:解答題
現(xiàn)有10道題,其中6道甲類題,4道乙類題,張同學從中任取3道題解答.
科目:高中數(shù)學
來源:
題型:解答題
下圖是某市3月1日至14日的空氣質(zhì)量指數(shù)趨勢圖,空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染,某人隨機選擇3月1日至3月13日中的某一天到達該市,并停留2天.
科目:高中數(shù)學
來源:
題型:解答題
設(shè)關(guān)于的一元二次方程.
科目:高中數(shù)學
來源:
題型:解答題
高三某班有兩個數(shù)學課外興趣小組,第一組有名男生,名女生,第二組有名男生,名女生.現(xiàn)在班主任老師要從第一組選出人,從第二組選出人,請他們在班會上和全班同學分享學習心得.
科目:高中數(shù)學
來源:
題型:解答題
對某校高一年級學生參加社區(qū)服務(wù)次數(shù)統(tǒng)計,隨機抽取了名學生作為樣本,得到這名學生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表如下:
科目:高中數(shù)學
來源:
題型:解答題
現(xiàn)有A,B兩球隊進行友誼比賽,設(shè)A隊在每局比賽中獲勝的概率都是.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
試題解析:(Ⅰ)的所有可能取值,即從,,,,,
這六個向量中任取兩個,共有種。 2分
由下表可知的所有可能取值為;故的所有可能取值為; 6分 1 0 0 -1 -1 1 -1 -2
(1)設(shè)所選3人中女副局長人數(shù)為X,求X的分布列和數(shù)學期望;
(2)若選派三個副局長依次到A、B、C三個局上任,求A局是男副局長的情況下,B局為女副局長的概率.
(1)若校園電視臺記者隨機采訪3位社長,求恰有1人是高一學生且至少有1人是初中學生的概率;
(2)若校園電視臺記者隨機采訪3位初中學生社長,設(shè)初二學生人數(shù)為,求的分布列及數(shù)學期望.
(I)求張同學至少取到1道乙類題的概率;
(II)已知所取的3道題中有2道甲類題,1道乙類題.設(shè)張同學答對甲類題的概率都是,答對每道乙類題的概率都是,且各題答對與否相互獨立.用表示張同學答對題的個數(shù),求的分布列和數(shù)學期望.
(Ⅰ)求此人到達當日空氣重度污染的概率;
(Ⅱ)設(shè)X是此人停留期間空氣質(zhì)量優(yōu)良的天數(shù),求X的分布列與數(shù)學期望.
(1)若是從、、、四個數(shù)中任取的一個數(shù),是從、、三個數(shù)中任取的一個數(shù),求上述方程有實根的概率;
(2)若是從區(qū)間任取的一個數(shù),是從區(qū)間任取的一個數(shù),求上述方程有實根的概率.
(Ⅰ)求選出的人均是男生的概率;
(Ⅱ)求選出的人中有男生也有女生的概率.
(1)求出表中的值;
(2)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于次的學生中任選人,求至少一人參加社區(qū)服務(wù)次數(shù)在區(qū)間內(nèi)的概率.
(Ⅰ)若比賽6局,求A隊至多獲勝4局的概率;
(Ⅱ)若采用“五局三勝”制,求比賽局數(shù)ξ的分布列和數(shù)學期望.
版權(quán)聲明:本站所有文章,圖片來源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無意侵犯版權(quán),如有侵權(quán),請作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號: 滬ICP備07509807號-10 鄂公網(wǎng)安備42018502000812號