如圖,在Rt△ABC中,∠ABC=3∠BAC=90°,BF⊥AC垂足是F,AE⊥平面ABC,CD∥AE,AC=4CD=4,AE=3.
(Ⅰ)求證:BE⊥DF;
(Ⅱ)求二面角B-DE-F的平面角的余弦值.

【答案】分析:(Ⅰ)先根據(jù)條件得到平面AEC⊥平面ABC;進(jìn)而得到BF⊥平面AEC,即可得到BF⊥DF;進(jìn)而根據(jù)條件得到DF⊥平面BEF即可證明結(jié)論;
(Ⅱ)先建立空間直角坐標(biāo)系,求出各點(diǎn)的坐標(biāo),進(jìn)而求出兩個(gè)平面的法向量的坐標(biāo),最后代入夾角計(jì)算公式即可求出結(jié)論.
解答:解:(Ⅰ)證明:∵AE⊥平面ABC,AE?平面AEC,
∴平面AEC⊥平面ABC,平面AEC∩平面ABC=AC,
BF?平面ABC,BF⊥AC,∴BF⊥平面AEC,DF?平面AEC,
∴BF⊥DF,
又∠ABC=3∠BAC=90°,∴BC=ACsin30°=4×=2,BF⊥AC,
∴CF=BCcos60°=1=CD,CD∥AE,AE⊥平面ABC,
∴CD⊥平面ABC,∴CD⊥AC,∴∠DFC=45°,
AF=AC-CF=3=AE,∴∠EFA=45°,
∴∠EFD=90°,即DF⊥EF,
BF∩EF=F,BF、EF?平面BEF,∴DF⊥平面BEF,
∴DF⊥BE.
(Ⅱ)過F作Fz∥AE,由AE⊥平面ABC可知Fz⊥平面ABC,
又BF⊥AC,∴BF、AC、l兩兩垂直,
以F為原點(diǎn),F(xiàn)A、FB、Fz依次為x、y、z軸建立空間直角坐標(biāo)系(如圖),
則F(0,0,0),,D(-1,0,1),E(3,0,3),
,,,
由(Ⅰ)知是平面DEF的一個(gè)法向量,設(shè)是平面BDE的一個(gè)法向量,
取z=2,得到,

∴二面角B-DE-F的平面角的余弦值為
點(diǎn)評:本題主要考察線線垂直的證明以及二面角的求法.一般在證明線線垂直時(shí),是轉(zhuǎn)化為線面垂直來證.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,D為BC上一點(diǎn),∠DAC=30°,BD=2,AB=2
3
,則AC的長為( 。
A、2
2
B、3
C、
3
D、
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,過點(diǎn)D作⊙O的切線,交BC于點(diǎn)E.
(1)求證:點(diǎn)E是邊BC的中點(diǎn);
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ABC=90°,BA=BC=2,AE⊥平面ABC,CD⊥平面ABC,CE交AD于點(diǎn)P.
(1)若AE=CD,點(diǎn)M為BC的中點(diǎn),求證:直線MP∥平面EAB
(2)若AE=2,CD=1,求銳二面角E-BC-A的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8.如圖,在Rt△ABC中,∠CAB=90°,AB=2,AC=
2
2
.DO⊥AB于O點(diǎn),OA=OB,DO=2,曲線E過C點(diǎn),動(dòng)點(diǎn)P在E上運(yùn)動(dòng),且保持|PA|+|PB|的值不變.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求曲線E的方程;
(2)過D點(diǎn)的直線L與曲線E相交于不同的兩點(diǎn)M、N且M在D、N之間,設(shè)
DM
DN
=λ,試確定實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,AC=1,BC=x,D是斜邊AB的中點(diǎn),將△BCD沿直線CD翻折,若在翻折過程中存在某個(gè)位置,使得CB⊥AD,則x的取值范圍是( 。
A、(0,
3
]
B、(
2
2
,2]
C、(
3
,2
3
]
D、(2,4]

查看答案和解析>>

同步練習(xí)冊答案