已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在處取得極值,對,恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時,求證:.
(1)在上遞減,在上遞增;(2);(3)證明詳見解析.
【解析】
試題分析:(1)先求函數(shù)的導(dǎo)函數(shù),然后分別求解不等式、,即可求出函數(shù)的單調(diào)增、減區(qū)間,注意函數(shù)的定義域;(2)先根據(jù)函數(shù)在取得極值,得到,進(jìn)而求出的值,進(jìn)而采用分離參數(shù)法得到,該不等式恒成立,進(jìn)一步轉(zhuǎn)化為,利用導(dǎo)數(shù)與最值的關(guān)系求出函數(shù)的最小值即可;(3)先將要證明的問題進(jìn)行等價轉(zhuǎn)化,進(jìn)而構(gòu)造函數(shù),轉(zhuǎn)化為證明該函數(shù)在單調(diào)遞增,根據(jù)函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系進(jìn)行證明即可.
試題解析:(1)當(dāng)時,
得,得
∴在上遞減,在上遞增
(2)∵函數(shù)在處取得極值,∴
∴
令,可得在上遞減,在上遞增
∴,即
(3)證明:
令,則只要證明在上單調(diào)遞增
又∵
顯然函數(shù)在上單調(diào)遞增
∴,即
∴在上單調(diào)遞增,即
∴當(dāng)時,有.
考點(diǎn):1.函數(shù)的單調(diào)性與導(dǎo)數(shù);2.函數(shù)的極值與導(dǎo)數(shù);3.函數(shù)的最值與導(dǎo)數(shù);4.分離參數(shù)法;5.構(gòu)造函數(shù)法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆山東省濟(jì)寧市高二5月質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知盒中裝有3個紅球、2個白球、5個黑球,它們大小形狀完全相同,現(xiàn)需一個紅球,甲每次從中任取一個不放回,在他第一次拿到白球的條件下,第二次拿到紅球的概率( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省濟(jì)寧市高二5月質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù),則” ”是” 在R上單調(diào)遞減”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省濟(jì)寧市高二5月質(zhì)量檢測文科數(shù)學(xué)試卷(解析版) 題型:選擇題
曲線的極坐標(biāo)方程化為直角坐標(biāo)為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省濟(jì)寧市高二5月質(zhì)量檢測文科數(shù)學(xué)試卷(解析版) 題型:選擇題
直線的參數(shù)方程是( )
A.(t為參數(shù))
B.(t為參數(shù))
C.(t為參數(shù))
D.(為參數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省高二下學(xué)期期中檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)在處取得極值,求函數(shù)以及的極大值和極小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省高二下學(xué)期期中檢測理科數(shù)學(xué)試卷(解析版) 題型:選擇題
給出命題:若是正常數(shù),且,,則(當(dāng)且僅當(dāng)時等號成立).根據(jù)上面命題,可以得到函數(shù)()的最小值及取最小值時的值分別為( )
A., B.,
C.25, D.,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省高二下學(xué)期期中質(zhì)量檢測試卷(解析版) 題型:選擇題
,向量與的位置關(guān)系為( )
A.平行 B.垂直 C.不平行也不垂直 D.夾角為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com