空間四邊形OABC中,OA=8,AB=6,AC=4,BC=5,∠OAC=45°,∠OAB=60°,求OA與BC夾角的余弦值.
【答案】分析:根據(jù)已給條件該題可利用數(shù)量積的方法求解,要求OA與BC夾角的余弦值,可求的夾角的余弦值,利用,代入公式向量的夾角公式求解即可.
解答:解:=8×6cos60°=24
=8×4cos135°=-
cosθ==
所以O(shè)A與BC夾角的余弦值為
點(diǎn)評(píng):本題主要考查了異面直線及其所成的角,以及向量的數(shù)量積,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,空間四邊形OABC中,
OA
=
a
OB
=
b
,
OC
=
c
,點(diǎn)M在
OA
上,且OM=2MA,點(diǎn)N為BC中點(diǎn),則
MN
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間四邊形OABC中,
OA
=
a
,
OB
=
b
OC
=
c
,點(diǎn)M在線段OA上,且OM=2MA,N為BC的中點(diǎn),則
MN
等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,空間四邊形OABC中,
OA
=a,
OB
=b,
OC
=c,點(diǎn)M在OA上,且OM=
1
2
MA,N為BC中點(diǎn),則
MN
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在空間四邊形OABC中,已知E是線段BC的中點(diǎn),G為AE的中點(diǎn),若
OA
,
OB
OC
分別記為
a
,
b
c
,則用
a
,
b
c
表示
OG
的結(jié)果為
OG
=
1
2
a
+
1
4
b
+
1
4
c
1
2
a
+
1
4
b
+
1
4
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

空間四邊形OABC中,
OA
=
a
,
OB
=
b
OC
=
c
,點(diǎn)M在OA上,且OM=2MA,N為BC的中點(diǎn),則
MN
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案