【題目】已知等比數(shù)列{an}的各項均為不等于1的正數(shù),數(shù)列{bn}滿足bn=lgan,b3=18,b6=12,則數(shù)列{bn}的前n項和的最大值等于( )
A. 126 B. 130 C. 132 D. 134
【答案】C
【解析】
由題意可知,lga3=b3,lga6=b6再由b3,b6,用a1和q表示出a3和b6,進而求得q和a1,根據(jù){an}為正項等比數(shù)列推知{bn}為等差數(shù)列,進而得出數(shù)列bn的通項公式和前n項和,可知Sn的表達式為一元二次函數(shù),根據(jù)其單調性進而求得Sn的最大值.
由題意可知,lga3=b3,lga6=b6.
又∵b3=18,b6=12,則a1q2=1018,a1q5=1012,
∴q3=10﹣6.
即q=10﹣2,∴a1=1022.
又∵{an}為正項等比數(shù)列,
∴{bn}為等差數(shù)列,
且d=﹣2,b1=22.
故bn=22+(n﹣1)×(﹣2)=﹣2n+24.
∴Sn=22n+×(﹣2)
=﹣n2+23n=,又∵n∈N*,故n=11或12時,(Sn)max=132.
故答案為:C.
【點睛】
這個題目考查的是等比數(shù)列的性質和應用;解決等差等比數(shù)列的小題時,常見的思路是可以化基本量,解方程;利用等差等比數(shù)列的性質解決題目;還有就是如果題目中涉及到的項較多時,可以觀察項和項之間的腳碼間的關系,也可以通過這個發(fā)現(xiàn)規(guī)律。
【題型】單選題
【結束】
12
【題目】已知數(shù)列是遞增數(shù)列,且對,都有,則實數(shù)的取值范圍是
A. B. C. D.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣a(x﹣1),其中a>0.
(Ⅰ)若函數(shù)f(x)在(0,+∞)上有極大值0,求a的值;(提示:當且僅當x=1時,lnx=x﹣1);
(Ⅱ)令F(x)=f(x)+a(x﹣1)+ (0<x≤3),其圖象上任意一點P(x0 , y0)處切線的斜率k≤ 恒成立,求實數(shù)a的取值范圍;
(Ⅲ)討論并求出函數(shù)f(x)在區(qū)間 上的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AC 是圓 O 的直徑,點 B 在圓 O 上,∠BAC=30°,BM⊥AC交 AC 于點 M,EA⊥平面ABC,FC//EA,AC=4,EA=3,FC=1.
(1)證明:EM⊥BF;
(2)求平面 BEF 與平面ABC 所成的二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)y=f (x)的定義域為D,如果存在非零常數(shù)T,對于任意 x∈D,都有f(x+T)=Tf (x),則稱函數(shù)y=f(x)是“似周期函數(shù)”,非零常數(shù)T為函數(shù)y=f( x)的“似周期”.現(xiàn)有下面四個關于“似周期函數(shù)”的命題:
①如果“似周期函數(shù)”y=f(x)的“似周期”為﹣1,那么它是周期為2的周期函數(shù);
②函數(shù)f(x)=x是“似周期函數(shù)”;
③函數(shù)f(x)=2x是“似周期函數(shù)”;
④如果函數(shù)f(x)=cosωx是“似周期函數(shù)”,那么“ω=kπ,k∈Z”.
其中是真命題的序號是 . (寫出所有滿足條件的命題序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點列An(an , bn)(n∈N*)均為函數(shù)y=ax(a>0,a≠1)的圖象上,點列Bn(n,0)滿足|AnBn|=|AnBn+1|,若數(shù)列{bn}中任意連續(xù)三項能構成三角形的三邊,則a的取值范圍為( )
A.(0, )∪( ,+∞)
B.( ,1)∪(1, )
C.(0, )∪( ,+∞)
D.( ,1)∪(1, )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中位數(shù)為1010的一組數(shù)構成等差數(shù)列,其末項為 2015,則該數(shù)列的首項為__________.
【答案】5.
【解析】
設數(shù)列的首項為,則,所以,故該數(shù)列的首項為,所以答案應填:.
【考點定位】等差中項.
【題型】填空題
【結束】
15
【題目】對于不等式,則對區(qū)間上的任意x都成立的實數(shù)t的取值范圍是_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin2x+2 sin(x+ )cos(x﹣ )﹣cos2x﹣ .
(1)求函數(shù)f(x)的單調遞減區(qū)間;
(2)求函數(shù)f(x)在[﹣ , π]上的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn , 且S3=9,a2a4=21,數(shù)列{bn}滿足 ,若 ,則n的最小值為( )
A.6
B.7
C.8
D.9
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知兩曲線f(x)=cosx,g(x)= sinx,x∈(0, )相交于點A.若兩曲線在點A處的切線與x軸分別相交于B,C兩點,則線段BC的長為 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com