已知函數(shù)上為增函數(shù),且,為常數(shù),.
(1)求的值;
(2)若上為單調(diào)函數(shù),求的取值范圍;
(3)設(shè),若在上至少存在一個,使得成立,求的取值范圍.

(1)由題意:上恒成立,即,[來源:學(xué)科網(wǎng)ZXXK]
上恒成立,
只需sin…………(4分)
(2) 由(1),得f(x)-g(x)=mx-,,由于f(x)-g(x)在其定義域內(nèi)為單調(diào)函數(shù),則上恒成立,即上恒成立,故,綜上,m的取值范圍是                               …………(9分)
(3)構(gòu)造函數(shù)F(x)=f(x)-g(x)-h(x),,
得,,所以在不存在一個,使得;                          …………(12分)
當m>0時,,因為,所以上恒成立,故F(x)在上單調(diào)遞增,,故m的取值范圍是…………(15分)
另法:(3)  令

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
⑴求的值;
⑵判斷函數(shù)在定義域內(nèi)的單調(diào)性并給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,二次函數(shù))的圖象與反比例函數(shù)圖象相交于點,已知點的坐標為,點在第三象限內(nèi),且的面積為為坐標原點)

① 求實數(shù)的值;
② 求二次函數(shù))的解析式;
③ 設(shè)拋物線與軸的另一個交點為,點為線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,且
(1)求的值;
(2)證明的奇偶性;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)
某民營企業(yè)生產(chǎn)A、B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖一所示;B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖二所示(利潤與投資單位:萬元).

(1)分別將A、B兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;
(2)該企業(yè)已籌集到10萬元資金,并全部投入A、B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)
求下列函數(shù)的定義域  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題8分)經(jīng)過調(diào)查發(fā)現(xiàn),某種新產(chǎn)品在投放市場的30天中,前20天其價格直線上升,后10天價格呈直線下降趨勢。現(xiàn)抽取其中4天的價格如下表所示:

時間
第4天
第12天
第20天
第28天
價格
(千元)
34
42
50
34
 
(1)寫出價格關(guān)于時間的函數(shù)表達式(表示投放市場的第天)
(2)若銷售量與時間的函數(shù)關(guān)系式為,問該產(chǎn)品投放市場第幾天,日銷售額最高?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,某小區(qū)準備在一直角圍墻ABC內(nèi)的空地上植出一塊“綠地ABD”,其中AB長為定值a,BD長可根據(jù)需要進行調(diào)節(jié)(BC足夠長),F(xiàn)規(guī)劃在ABD的內(nèi)接正方形BGEF內(nèi)種花,其余地方種草,且把種草的面積與種花的面積的比值稱為“草花比y”

(1)設(shè),將y表示成的函數(shù)關(guān)系式。
(2)當BE為多長時,y有最小值?最小值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)是定義在上的偶函數(shù),當時,
(1)求的解析式;  
(2)討論函數(shù)的單調(diào)性,并求的值域。

查看答案和解析>>

同步練習(xí)冊答案