已知等差數(shù)列,其中成等比數(shù)列,為數(shù)列的前n項和,則____

 

【答案】

.

【解析】

試題分析:因為成等比數(shù)列,所以,從而或d=0,所以 ,故答案為.

考點:本題主要考查等差數(shù)列、等比數(shù)列的基礎(chǔ)知識。

點評:基礎(chǔ)題,本題綜合考查等差數(shù)列的求和,等差數(shù)列、等比數(shù)列的基礎(chǔ)知識,思路比較明確。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

20、已知等差數(shù)列{an}的首項為a,公差為b,等比數(shù)列{bn}的首項為b,公比為a,其中a,b都是大于1
的正整數(shù),且a1<b1,b2<a3
(1)求a的值;
(2)若對于任意的n∈N+,總存在m∈N+,使得am+3=bn成立,求b的值;
(3)令Cn=an+1+bn,問數(shù)列{Cn}中是否存在連續(xù)三項成等比數(shù)列?若存在,求出所有成等比數(shù)列的連續(xù)三項;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的首項為a,公差為b,等比數(shù)列{bn}的首項為b,公比為a(其中a,b均為正整數(shù)).
(Ⅰ)若a1=b1,a2=b2,求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)在(Ⅰ)的條件下,若a1,a3,an1,an2,…,ank,…(3<n1<n2<…<nk<…)成等比數(shù)列,求數(shù)列{nk}的通項公式;
(Ⅲ)若a1<b1<a2<b2<a3,且至少存在三個不同的b值使得等式am+t=bn(t∈N)成立,試求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個命題:
①在三角形ABC中,若A>B則sinA>sinB;
②若數(shù)列{bn}的前n項和Sn=n2+2n+1.則數(shù)列{bn}從第二項起成等差數(shù)列;
③已知Sn是等差數(shù)列{an}的前n項和,若S7>S8則S9>S8;
④已知等差數(shù)列{an}的前n項和為Sn,若a5=5a3
S9S5
=9;
⑤若{an}是等比數(shù)列,且Sn=3n+1+r,則r=-1;
其中正確命題的序號為:
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},其中a1,a3,a4成等比數(shù)列,Sn為數(shù)列{an}的前n項和,則
S3-S2
S5-S3
=
2或
1
2
2或
1
2

查看答案和解析>>

同步練習(xí)冊答案