分析 利用遞推關(guān)系可得an+1-an=an+2×3n-1,變形為${a}_{n+1}-2×{3}^{n}$=2$({a}_{n}-2×{3}^{n-1})$,然后利用等比數(shù)列的通項公式可得an的通項公式.
解答 解:∵an+1=Sn+3n,n∈N*,
∴當n≥2時,an=Sn-1+3n-1,
an+1=2an+2×3n-1,
變形為${a}_{n+1}-2×{3}^{n}$=2$({a}_{n}-2×{3}^{n-1})$,
a2=a1+3=7,
a2-6=1,
∴數(shù)列$\{{a}_{n}-2×{3}^{n-1}\}$從第二項開始是等比數(shù)列,公比為2.
an=2•3n-1+2n-2,
∴an=$\left\{\begin{array}{l}{4,n=1}\\{2×{3}^{n-1}+{2}^{n-2},n≥2}\end{array}\right.$.
點評 本題考查了等比數(shù)列的通項公式、遞推關(guān)系的應(yīng)用,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 5π | C. | $\frac{4}{5}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 10$\sqrt{3}$ | B. | 25 | C. | 10$\sqrt{2}$ | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-4,0)∪(0,4] | B. | (-4,4) | C. | [-4,4] | D. | (-∞,4)∪(4,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com