(本小題滿分14分)已知直線L:與拋物線C:,相交于兩點(diǎn),設(shè)點(diǎn)的面積為.

(Ⅰ)若直線L上與連線距離為的點(diǎn)至多存在一個(gè),求的范圍。

(Ⅱ)若直線L上與連線的距離為的點(diǎn)有兩個(gè),分別記為,且滿足 恒成立,求正數(shù)的范圍.

 

【答案】

(1)

(2) 。

【解析】本試題主要是考查了直線與拋物線的位置關(guān)系以及直線與圓的位置關(guān)系的綜合運(yùn)用。

(1)由已知, 直線L與拋物線相交,所以得到方程組,得到一元二次方程中判別式大于零,同時(shí)又直線L與以M為圓心的單位圓相離或相切,所以點(diǎn)到直線的距離等于圓的半徑得到關(guān)系式。

(2)由題意可知,當(dāng)直線L與以M為圓心的單位圓相交于點(diǎn)   C,D時(shí),由題意可知,當(dāng)直線L與以M為圓心的單位圓相交于點(diǎn)  C,D時(shí),可得CD的長度,以及F(K)的值,進(jìn)而借助于不等式得到結(jié)論。

解:(1)由已知, 直線L與拋物線相交,所以

,即… (1)

又直線L與以M為圓心的單位圓相離或相切,所以,…(2)

由(1)(2)得:

…………………7分

(2)由題意可知,當(dāng)直線L與以M為圓心的單位圓相交于點(diǎn)   C,D時(shí),可得,且

,

,

,當(dāng)且僅當(dāng)取到最小值是

所以,     …………………………14分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時(shí),求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對(duì)一應(yīng)季商品過去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊答案