【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的坐標(biāo)方程為,曲線的參數(shù)方程為為參數(shù),.

1)求直線的直角坐標(biāo)方程及曲線的普通方程;

2)直線和曲線相交于點,,設(shè)相交弦的長度為,求.

【答案】1,;(2.

【解析】

1)轉(zhuǎn)化,利用即得解;曲線C的方程消去參數(shù),即得解一般方程

2)由(1)中圓的一般方程,求出圓心坐標(biāo),求解圓心到直線的距離,利用弦長,弦心距,半徑的勾股關(guān)系,即得解

1)因為直線的極坐標(biāo)方程為,

所以,即為

因為,所以直線的直角坐標(biāo)方程為,

即為

由曲線的參數(shù)方程,得,兩式平方做和,

得到,

所以曲線的普通方程為;

2)由(1)得,圓的圓心為,半徑

所以圓心到直線的距離

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(),曲線在點處的切線方程為.

(1)求實數(shù)的值,并求的單調(diào)區(qū)間;

(2)試比較的大小,并說明理由;

(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù),試研究函數(shù)的極值情況;

(2)記函數(shù)在區(qū)間內(nèi)的零點為,記,若在區(qū)間內(nèi)有兩個不等實根,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某有機水果種植基地試驗種植的某水果在售賣前要成箱包裝,每箱80個,每一箱水果在交付顧客之前要按約定標(biāo)準(zhǔn)對水果作檢測,如檢測出不合格品,則更換為合格品.檢測時,先從這一箱水果中任取10個作檢測,再根據(jù)檢測結(jié)果決定是否對余下的所有水果作檢測.設(shè)每個水果為不合格品的概率都為,且各個水果是否為不合格品相互獨立.

(Ⅰ)記10個水果中恰有2個不合格品的概率為,求取最大值時p的值

(Ⅱ)現(xiàn)對一箱水果檢驗了10個,結(jié)果恰有2個不合格,以(Ⅰ)中確定的作為p的值.已知每個水果的檢測費用為1.5元,若有不合格水果進入顧客手中,則種植基地要對每個不合格水果支付a元的賠償費用

(ⅰ)若不對該箱余下的水果作檢驗,這一箱水果的檢驗費用與賠償費用的和記為X,求EX;

(ⅱ)以檢驗費用與賠償費用和的期望值為決策依據(jù),當(dāng)種植基地要對每個不合格水果支付的賠償費用至少為多少元時,將促使種植基地對這箱余下的所有水果作檢驗?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)《環(huán)境空氣質(zhì)量指數(shù)技術(shù)規(guī)定(試行)》規(guī)定:空氣質(zhì)量指數(shù)在區(qū)間、、、、時,其對應(yīng)的空氣質(zhì)量狀況分別為優(yōu)、良、輕度污染、中度污染、重度污染、嚴重污染.如圖為某市2019101日至107日的空氣質(zhì)量指數(shù)直方圖,在這7天內(nèi),下列結(jié)論正確的是( )

A.4的方差小于后3的方差

B.7天內(nèi)空氣質(zhì)量狀況為嚴重污染的天數(shù)為3

C.7天的平均空氣質(zhì)量狀況為良

D.空氣質(zhì)量狀況為優(yōu)或良的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)設(shè),若有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個調(diào)查學(xué)生記憶力的研究團隊從某中學(xué)隨機挑選100名學(xué)生進行記憶測試,通過講解100個陌生單詞后,相隔十分鐘進行聽寫測試,間隔時間(分鐘)和答對人數(shù)的統(tǒng)計表格如下:

時間(分鐘)

10

20

30

40

50

60

70

80

90

100

答對人數(shù)

98

70

52

36

30

20

15

11

5

5

1.99

1.85

1.72

1.56

1.48

1.30

1.18

1.04

0.7

0.7

時間與答對人數(shù)的散點圖如圖:

附:,,,,對于一組數(shù)據(jù),……,,其回歸直線的斜率和截距的最小二乘估計分別為:.請根據(jù)表格數(shù)據(jù)回答下列問題:

1)根據(jù)散點圖判斷,,哪個更適宣作為線性回歸類型?(給出判斷即可,不必說明理由)

2)根據(jù)(1)的判斷結(jié)果,建立的回歸方程;(數(shù)據(jù)保留3位有效數(shù)字)

3)根據(jù)(2)請估算要想記住的內(nèi)容,至多間隔多少分鐘重新記憶一遍.(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中是自然對數(shù)的底數(shù).

,使得不等式成立,試求實數(shù)的取值范圍;

)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班主任對全班50名學(xué)生學(xué)習(xí)積極性和對待班級工作的態(tài)度進行了調(diào)查,統(tǒng)計數(shù)據(jù)如下表所示:

積極參加

班級工作

不太主動參加

班級工作

合計

學(xué)習(xí)積極性高

18

7

25

學(xué)習(xí)積極性一般

6

19

25

合計

24

26

50

1)如果隨機抽查這個班的一名學(xué)生,那么抽到積極參加班級工作的學(xué)生的概率是多少?抽到不太主動參加班級工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?

2)試運用獨立性檢驗的思想方法能否有99.9%的把握認為學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度有關(guān)系?并說明理由.(參考下表)

P(K2

k)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中)

查看答案和解析>>

同步練習(xí)冊答案