精英家教網 > 高中數學 > 題目詳情

若點M(-3,1,5)與N(0,-2,3)關于點P對稱,則點P的坐標為

[  ]

A.(-3,3,2)

B.

C.(3,-3,-2)

D.(3,-5,1)

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

平面直角坐標系中,O為坐標原點,給定兩點M(1,-3)N(5,1),若點C滿足
OC
=t
OM
+(1-t)
ON
(t∈R)

(Ⅰ)求點C的軌跡方程;
(Ⅱ)設點C的軌跡與拋物線y2=4x交于A、B兩點,求證:
OA
OB
;
(Ⅲ)求以AB為直徑的圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知兩個點M(-3,0)和N(3,0),若直線上存在點P,使|PM|+|PN|=10,則稱該直線為“A型直線”,則下列直線
①x=6②y=-5③y=x④y=2x+1中為“A型直線”的是
③④
③④
 (填上所有正確結論的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

選修4-4:坐標系與參數方程
以直角坐標系的原點O為極點,x軸的正半軸為極軸,已知點P的直角坐標(1,-5),點M的極坐標為(4,
π
2
)
,若直線l過點P,且傾斜角為
π
3
,圓C以M為圓心、4為半徑.
(1)寫出直線l的參數方程和圓C的極坐標方程;
(2)試判定直線l和圓C的位置關系.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•奉賢區(qū)二模)給出下列3個命題:
①在平面內,若動點M到F1(-1,0)、F2(1,0)兩點的距離之和等于2,則動點M的軌跡是以F1,F2為焦點的橢圓;
②在平面內,已知F1(-5,0),F2(5,0),若動點M滿足條件:|MF1|-|MF2|=8,則動點M的軌跡方程是
x2
16
-
y2
9
=1
;
③在平面內,若動點M到點P(1,0)和到直線x-y-2=0的距離相等,則動點M的軌跡是拋物線.
上述三個命題中,正確的有(  )

查看答案和解析>>

同步練習冊答案