【題目】下列命題中:①若“”是“”的充要條件;
②若“,”,則實數(shù)的取值范圍是;
③已知平面、、,直線、,若,,,,則;
④函數(shù)的所有零點存在區(qū)間是.
其中正確的個數(shù)是( )
A.B.C.D.
【答案】C
【解析】
利用充分條件與必要條件的關(guān)系判斷①的正誤;根據(jù)特稱命題成立的等價條件求實數(shù)的取值范圍,可判斷②的正誤;由面面垂直的性質(zhì)定理可判斷③的正誤;利用零點存在定理可判斷④的正誤.
①由,可知,所以有,當時,滿足,但不成立,所以①錯誤;
②要使“,”成立,則有對應(yīng)方程的判別式,即,解得或,所以②正確;
③因為,,,所以,又,所以根據(jù)面面垂直的性質(zhì)定理知,所以③正確;
④因為,,且函數(shù)連續(xù),
所以根據(jù)零點存在定理可知在區(qū)間上,函數(shù)存在零點,所以④正確.
所以正確的是②③④,共有三個.
故選:C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是圓的直徑,,在圓上且分別在的兩側(cè),其中,.現(xiàn)將其沿折起使得二面角為直二面角,則下列說法不正確的是( )
A.,,,在同一個球面上
B.當時,三棱錐的體積為
C.與是異面直線且不垂直
D.存在一個位置,使得平面平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】斐波那契數(shù)列滿足: .若將數(shù)列的每一項按照下圖方法放進格子里,每一小格子的邊長為1,記前項所占的格子的面積之和為,每段螺旋線與其所在的正方形所圍成的扇形面積為,則下列結(jié)論錯誤的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐中,底面為菱形,底面,,,E為棱的中點,F為棱上的動點.
(1)求證:平面;
(2)若銳二面角的正弦值為,求點F的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知甲、乙兩名工人在同樣條件下每天各生產(chǎn)100件產(chǎn)品,且每生產(chǎn)1件正品可獲利20元,生產(chǎn)1件次品損失30元,甲,乙兩名工人100天中出現(xiàn)次品件數(shù)的情況如表所示.
甲每天生產(chǎn)的次品數(shù)/件 | 0 | 1 | 2 | 3 | 4 |
對應(yīng)的天數(shù)/天 | 40 | 20 | 20 | 10 | 10 |
乙每天生產(chǎn)的次品數(shù)/件 | 0 | 1 | 2 | 3 |
對應(yīng)的天數(shù)/天 | 30 | 25 | 25 | 20 |
(1)將甲每天生產(chǎn)的次品數(shù)記為(單位:件),日利潤記為(單位:元),寫出與的函數(shù)關(guān)系式;
(2)如果將統(tǒng)計的100天中產(chǎn)生次品量的頻率作為概率,記表示甲、乙兩名工人1天中各自日利潤不少于1950元的人數(shù)之和,求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點分別為,是橢圓短軸的一個頂點,并且是面積為的等腰直角三角形.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓相交于兩點,過作與軸垂直的直線,已知點,問直線與的交點的橫坐標是否為定值?若是,則求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們把活躍網(wǎng)店數(shù)量較多的村莊稱為淘寶村,隨著電子商務(wù)在中國的發(fā)展,不少農(nóng)村出現(xiàn)了一批專業(yè)的淘寶村,已知某鄉(xiāng)鎮(zhèn)有多個淘寶村,現(xiàn)從該鄉(xiāng)鎮(zhèn)淘寶村中隨機抽取家商戶,統(tǒng)計他們某一周的銷售收入,結(jié)果統(tǒng)計如下:
銷售收入(收入) | ||||
商戶數(shù) |
(1)從這家商戶中按該周銷售收入超過萬元與不超過萬元分為組,按分層抽樣從中抽取家參加經(jīng)驗交流會,并從這家中選家進行發(fā)言,求選出的家恰有家銷售收入超過萬元的概率;
(2)若這家商戶中有家商戶入駐兩家網(wǎng)購平臺,其中家銷售收入高于萬元,完成下面的列聯(lián)表,并判斷能否有的把握認為“銷售收入是否高于萬元與入駐兩家網(wǎng)購平臺有關(guān)”?
入駐兩家網(wǎng)購平臺 | 僅入駐一家網(wǎng)購平臺 | 合計 | |
銷售收入高于萬元 | |||
銷售收入不高于萬元 | |||
合計 |
附:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點為、,是與的等差中項,其中、、都是正數(shù),過點和的直線與原點的距離為.
(1)求橢圓的方程;
(2)點是橢圓上一動點,定點,求△面積的最大值;
(3)已知定點,直線與橢圓交于、相異兩點.證明:對任意的,都存在實數(shù),使得以線段為直徑的圓過點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com