已知a∈R,函數(shù),g(x)=(lnx-1)ex+x(其中e為自然對(duì)數(shù)的底數(shù)).

(1)求函數(shù)f(x)在區(qū)間(0,e]上的最小值;

(2)是否存在實(shí)數(shù)x0∈(0,e],使曲線y=g(x)在點(diǎn)x=x0處的切線與y軸垂直?若存在,求出x0的值;若不存在,請(qǐng)說(shuō)明理由.

答案:
解析:

  解:∵,∴

  令,得

 、偃,則,在區(qū)間上單調(diào)遞增,此時(shí)函數(shù)無(wú)最小值.

 、谌,當(dāng)時(shí),,函數(shù)在區(qū)間上單調(diào)遞減,

  當(dāng)時(shí),,函數(shù)在區(qū)間上單調(diào)遞增,

  所以當(dāng)時(shí),函數(shù)取得最小值

 、廴,則,函數(shù)在區(qū)間上單調(diào)遞減,

  所以當(dāng)時(shí),函數(shù)取得最小值

  綜上可知,當(dāng)時(shí),函數(shù)在區(qū)間上無(wú)最小值;

  當(dāng)時(shí),函數(shù)在區(qū)間上的最小值為;

  當(dāng)時(shí),函數(shù)在區(qū)間上的最小值為

  (2)解:∵,

  ∴

  

  由(1)可知,當(dāng)時(shí),

  此時(shí)在區(qū)間上的最小值為,即

  當(dāng),,

  ∴

  曲線在點(diǎn)處的切線與軸垂直等價(jià)于方程有實(shí)數(shù)解.

  而,即方程無(wú)實(shí)數(shù)解.

  故不存在,使曲線在點(diǎn)處的切線與軸垂直.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖南省四市九校高三上學(xué)期12月月考理科數(shù)學(xué) 題型:解答題

(本小題滿分14分)

已知a∈R,函數(shù),g(x)=(lnx-1)ex+x(其中e為自然對(duì)數(shù)的底數(shù)).(1)判斷函數(shù)f(x)在上的單調(diào)性;(2)是否存在實(shí)數(shù),使曲線y=g(x)在點(diǎn)x=x0處的切線與y軸垂直? 若存在,求出x0的值;若不存在,請(qǐng)說(shuō)明理由.(3)若實(shí)數(shù)m,n滿足m>0, n>0,求證:nnemmnen.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河南省豫北六校高三第三次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知a∈R,函數(shù),g(x)=(lnx-1)ex+x(其中e為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)f(x)在區(qū)間(0,e]上的最小值;
(2)是否存在實(shí)數(shù)x∈(0,e],使曲線y=g(x)在點(diǎn)x=x處的切線與y軸垂直?若存在,求出x的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江西省師大附中、鷹潭一中、宜春中學(xué)、白鷺洲中學(xué)、南昌三中五校高三聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知a∈R,函數(shù),g(x)=(lnx-1)ex+x(其中e為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)f(x)在區(qū)間(0,e]上的最小值;
(2)是否存在實(shí)數(shù)x∈(0,e],使曲線y=g(x)在點(diǎn)x=x處的切線與y軸垂直?若存在,求出x的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年湖北省潛江中學(xué)高三數(shù)學(xué)滾動(dòng)訓(xùn)練02(解析版) 題型:解答題

已知a∈R,函數(shù),g(x)=(lnx-1)ex+x(其中e為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)f(x)在區(qū)間(0,e]上的最小值;
(2)是否存在實(shí)數(shù)x∈(0,e],使曲線y=g(x)在點(diǎn)x=x處的切線與y軸垂直?若存在,求出x的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年廣東省各地市高考數(shù)學(xué)模擬試卷分類(lèi)匯編02:函數(shù)與導(dǎo)數(shù)(解析版) 題型:解答題

已知a∈R,函數(shù),g(x)=(lnx-1)ex+x(其中e為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)f(x)在區(qū)間(0,e]上的最小值;
(2)是否存在實(shí)數(shù)x∈(0,e],使曲線y=g(x)在點(diǎn)x=x處的切線與y軸垂直?若存在,求出x的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案