【題目】設(shè)集合P={m|﹣1<m≤0},Q={m|mx2+4mx﹣4<0對任意x恒成立},則P與Q的關(guān)系是( )
A.PQ
B.QP
C.P=Q
D.P∩Q=

【答案】C
【解析】解:Q={m∈R|mx2+4mx﹣4<0對任意實數(shù)x恒成立},

對m分類:①m=0時,﹣4<0恒成立;

②m<0時,需△=(4m)2﹣4×m×(﹣4)<0,解得﹣1<m<0.

綜合①②知m≤0,所以Q={m∈R|﹣1<m≤0}.

因為P={m|﹣1<m≤0},

所以P=Q.

所以答案是:C.

【考點精析】解答此題的關(guān)鍵在于理解集合的表示方法-特定字母法的相關(guān)知識,掌握①自然語言法:用文字?jǐn)⑹龅男问絹砻枋黾?②列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi)表示集合.③描述法:{|具有的性質(zhì)},其中為集合的代表元素.④圖示法:用數(shù)軸或韋恩圖來表示集合.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+bx﹣3在x=1處取得極值,且在(0,﹣3)點處的切線與直線2x+y=0平行.
(1)求f(x)的解析式;
(2)求函數(shù)g(x)=xf(x)+4x的單調(diào)遞增區(qū)間及極值.
(3)求函數(shù)g(x)=xf(x)+4x在x∈[0,2]的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)的短軸長為2,離心率
(1)求橢圓C的方程;
(2)若斜率為k的直線過點M(2,0),且與橢圓C相交于A,B兩點.試求k為何值時,三角形OAB是以O(shè)為直角頂點的直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的不等式ax2+bx+c>0的解集為{x|﹣1<x<2},則關(guān)于x的不等式cx2+bx+a>0的解集是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)F1 , F2分別是C: + =1(a>b>0)的左,右焦點,M是C上一點且MF2與x軸垂直,直線MF1與C的另一個交點為N.
(1)若直線MN的斜率為 ,求C的離心率;
(2)若直線MN在y軸上的截距為2,且|MN|=5|F1N|,求a,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正三棱柱ABC﹣A′B′C′中,若AA′=2AB,則異面直線AB′與BC′所成角的余弦值為( )

A.0
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 (a>0,b>0)的離心率為 ,虛軸長為4.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)過點(0,1),傾斜角為45°的直線l與雙曲線C相交于A、B兩點,O為坐標(biāo)原點,求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的是(
A.若p∨q為真命題,則p∧q為真命題
B.“a>0,b>0”是“ ≥2”的充分必要條件
C.命題“若x2﹣3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2﹣3x+2≠0”
D.命題p:?x∈R,使得x2+x﹣1<0,則¬p:?x∈R,使得x2+x﹣1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若f(x)=a+ 是奇函數(shù),則a=

查看答案和解析>>

同步練習(xí)冊答案