過拋物線y2=2px(p>0)的焦點(diǎn)作傾斜角為30°的直線l與拋物線交于P,Q兩點(diǎn),分別作PP¢、QQ¢垂直于拋物線的準(zhǔn)線于P¢、Q¢,若|PQ|=2,則四邊形PP¢Q¢Q的面積為

A.1                B.2                C.             D.3

 

【答案】

A

【解析】

試題分析:如圖F(,0),直線PQ方程為y=  (x-),代入y2=2px整理得

設(shè),則="7p,"

所以,

2,得。所以梯形的高為=×=1,故四邊形PP¢Q¢Q的面積為=1,故選A。

考點(diǎn):本題主要考查拋物線的定義,直線與拋物線的位置關(guān)系,弦長公式。

點(diǎn)評:中檔題,所得四邊形是梯形,且上下底邊和為PQ=2,因此,只需求梯形的高。通過聯(lián)立方程組,應(yīng)用韋達(dá)定理、弦長公式,達(dá)到解題目的。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=2px(p>0)的焦點(diǎn)F的直線l與拋物線在第一象限的交點(diǎn)為A,與拋物線的準(zhǔn)線的交點(diǎn)為B,點(diǎn)A在拋物線準(zhǔn)線上的射影為C,若
AF
=
FB
,
BA
BC
=48
,則拋物線的方程為( 。
A、y2=4x
B、y2=8x
C、y2=16x
D、y2=4
2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=2px(p>0)上一定點(diǎn)P(x0,y0)(y0>0)作兩條直線分別交拋物線于A(x1,y1),B(x2,y2),若PA與PB的斜率存在且傾斜角互補(bǔ),則
y1+y2y0
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=2px(p>0)的焦點(diǎn)F作直線交拋物線于A、B兩點(diǎn),O為拋物線的頂點(diǎn).則△ABO是一個( 。
A、等邊三角形B、直角三角形C、不等邊銳角三角形D、鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=2px(p>0)的焦點(diǎn)F的直線AB交拋物線于A,B兩點(diǎn),弦AB的中點(diǎn)為M,過M作AB的垂直平分線交x軸于N.
(1)求證:FN=
12
AB

(2)過A,B的拋物線的切線相交于P,求P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•武漢模擬)已知過拋物線y2=2px(p>0)的焦點(diǎn)F的直線交拋物線于M、N兩點(diǎn),直線OM、ON(O為坐標(biāo)原點(diǎn))分別與準(zhǔn)線l:x=-
p
2
相交于P、Q兩點(diǎn),則∠PFQ=( 。

查看答案和解析>>

同步練習(xí)冊答案