3.若直線l的方向向量為$\overrightarrow$,平面α的法向量為$\overrightarrow{n}$,則可能使l∥α的是( 。
A.$\overrightarrow$=(1,0,0),$\overrightarrow{n}$=(-2,0,0)B.$\overrightarrow$=(1,3,5),$\overrightarrow{n}$=(1,0,1)
C.$\overrightarrow$=(0,2,1),$\overrightarrow{n}$=(-1,0,-1)D.$\overrightarrow$=(1,-1,3),$\overrightarrow{n}$=(0,3,1)

分析 根據(jù)l∥α?xí)r,$\overrightarrow$•$\overrightarrow{n}$=0,分別判斷A、B、C、D是否滿足條件即可.

解答 解:若l∥α,則$\overrightarrow$•$\overrightarrow{n}$=0,
而A中$\overrightarrow$•$\overrightarrow{n}$=-2,不滿足條件;
B中$\overrightarrow$•$\overrightarrow{n}$=1+5=6,不滿足條件;
C中$\overrightarrow$•$\overrightarrow{n}$=-1,不滿足條件;
D中$\overrightarrow$•$\overrightarrow{n}$=-3+3=0,滿足條件.
故選:D.

點評 本題考查了向量語言表述線面的垂直和平行關(guān)系的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知某幾何體的三視圖如圖所示.
(Ⅰ)畫出該幾何體的直觀圖并求體積V;
(Ⅱ)求該幾何體的表面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在直三棱柱ABC-A1B1C1中,側(cè)棱長為$2\sqrt{3}$,在底面△ABC中,$C=60°,AB=\sqrt{3}$,則此直三棱柱的外接球的表面積為16π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=loga(a-k•ax)(a>0,a≠1).
(1)當(dāng)a∈(0,1)時,函數(shù)f(x)在[1,+∞)上有意義,求實數(shù)k的取值范圍;
(2)當(dāng)a>1時,若函數(shù)f(x)的反函數(shù)就是它本身,求k的值及函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知P是圓C:(x+1)2+y2=16.上任意一點,A(1,0),線段PA的垂直平分線與PC相交于點Q.
(1)求點Q的軌跡方程;
(2)已知直線y=kx+m與點Q的軌跡方程相交于M,N兩點,且滿足$\overrightarrow{OM}$•$\overrightarrow{ON}$=0,求證:$\frac{1}{|OM{|}^{2}}$+$\frac{1}{|ON{|}^{2}}$定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖,已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點F恰好是拋物線y2=2px(p>0)的焦點,且兩曲線的公共點連線AB過F,則雙曲線的離心率是$\sqrt{2}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某空間幾何體的三視圖及其尺寸如圖所示,則該幾何體的表面積是(  )
A.32+8$\sqrt{6}$B.48+8$\sqrt{6}$C.48+8$\sqrt{3}$D.44+8$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.計算
(1)lg 8+lg 125-($\frac{1}{7}$)-2+16${\;}^{\frac{3}{4}}$+($\sqrt{3}$-1)0
(2)已知tanα=3,求$\frac{2sinα-cosα}{sinα+3cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列說法正確的是(  )
A.若“p或q”為真,則“p且q”也為真
B.命題“若x=2,則x2-5x+6=0”的否命題是“若x=2,則x2-5x+6≠0”
C.已知a,b∈R,命題“若a>b,則|a|>|b|”的逆否命題是真命題
D.已知a,b,m∈R,命題“若am2<bm2,則a<b”為真命題

查看答案和解析>>

同步練習(xí)冊答案