拋物線的焦點為橢圓
x2
9
+
y2
4
=1的左焦點,頂點在橢圓中心,則拋物線方程為______.
因為橢圓
x2
9
+
y2
4
=1的左焦點為(-
5
.0),所以
p
2
=
5
,2p=4
5
且拋物線開口向左.
所以拋物線方程為y2=-4
5
x.
故答案為:y2=-4
5
x.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年廣州市七區(qū)聯(lián)考高二數(shù)學(xué)(文)下學(xué)期期末監(jiān)測 題型:解答題

(本大題滿分14分)

如圖,已知直線L:過橢圓C:的右焦點F,

且交橢圓C于A、B兩點,點A、B在直線上的射影依次為點D、E.

(Ⅰ)若拋物線的焦點為橢圓C的上頂點,求橢圓C的方程;

(Ⅱ)若為x軸上一點;

求證: A、N、E三點共線.

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直線L:數(shù)學(xué)公式的右焦點F,且交橢圓C于A、B兩點,點A、B在直線G:x=a2上的射影依次為點D、E.
(1)若拋物線數(shù)學(xué)公式的焦點為橢圓C 的上頂點,求橢圓C的方程;(2)(理科生做)連接AE、BD,試探索當(dāng)m變化時,直線AE、BD是否相交于一定點N?若交于定點N,請求出N點的坐標(biāo),并給予證明;
否則說明理由.
(文科生做)若數(shù)學(xué)公式為x軸上一點,求證:數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省月考題 題型:解答題

如圖,已知直線L:x=my+1過橢圓C:的右焦點F,且交橢圓C于A,B兩點,點A,F(xiàn),B在直線G:x=a2上的射影依次為點D,K,E,
(1)已知拋物線的焦點為橢圓C的上頂點.
①求橢圓C的方程;
②若直線L交y軸于點M,且,當(dāng)m變化時,求λ12的值;
(2)連接AE,BD,試探索當(dāng)m變化時,直線AE、BD是否相交于一定點N?若交于定點N,請求出N點的坐標(biāo)并給予證明;否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年安徽省安慶市潛山中學(xué)高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

如圖,已知直線L:x=my+1過橢圓C:的右焦點F,且交橢圓C于A,B兩點,點A,F(xiàn),B在直線G:x=a2上的射影依次為點D,K,E,
(1)已知拋物線的焦點為橢圓C的上頂點.
①求橢圓C的方程;
②若直線L交y軸于點M,且,當(dāng)m變化時,求λ12的值;
(2)連接AE,BD,試探索當(dāng)m變化時,直線AE、BD是否相交于一定點N?若交于定點N,請求出N點的坐標(biāo)并給予證明;否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年遼寧省沈陽市東北育才學(xué)校高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:解答題

如圖,已知直線L:的右焦點F,且交橢圓C于A、B兩點,點A、B在直線G:x=a2上的射影依次為點D、E.
(1)若拋物線的焦點為橢圓C的上頂點,求橢圓C的方程;
(2)若為x軸上一點,求證:

查看答案和解析>>

同步練習(xí)冊答案