若y=sin(-
1
2
x-
π
6
)的圖象按照向量
a
平移后得到y(tǒng)=sin(-
1
2
x)的圖象,則
a
可以是(  )
A、(-
π
3
,0)
B、(
π
3
,0)
C、(-
π
6
,0)
D、(
π
6
,0)
分析:將函數(shù)y=sin(-
1
2
x-
π
6
)化簡為sin[-
1
2
(x+
π
3
)],即可求出
a
,確定選項.
解答:解:依題意,y=sin(-
1
2
x-
π
6
)=sin[-
1
2
(x+
π
3
)],所以
a
=(
π
3
,0),
故選B;
點(diǎn)評:本題考查函數(shù)y=Asin(ωx+φ)的圖象變換,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
=(2cosα,2sinα),
b
=(3cosβ,3sinβ),a與b的夾角為60°,則直線xcosα-ysinα+
1
2
=0
與圓(x-cosβ)2+(y+sinβ)2=
1
2
的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
 m 
=(2cosα , 2sinα)
,
 n 
=(3cosβ , 3sinβ)
,若
 m 
 n 
的夾角為60°,則直線 xcosα-ysinα+
1
2
=0
與圓(x-cosβ)2+(y+sinβ)2=
1
2
的位置關(guān)系是( 。
A、相交但不過圓心B、相交過圓心
C、相切D、相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2cosα,2sinα),
b
=(3cosβ,3sinβ),若向量
a
b
的夾角為60°,則直線xcosα-ysinα+
1
2
=0
與圓(x-cosβ)2+(y+sinβ)2=
1
2
的位置關(guān)系是( 。
A、相交B、相切
C、相離D、相交且過圓心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

m、n是不同的直線,α、β、γ是不同的平面,有以下四個命題:
①若α∥β,α∥γ,則β∥γ;②若α⊥β,m∥α,則m⊥β;③若m⊥α,m∥β,則α⊥β;
④若y=sin(2x+
π
3
)
,則(-
π
12
,0)
在函數(shù)圖象上,其中真命題的序號是( 。
A、②③B、①④C、①③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列6個命題中正確命題個數(shù)是(  )
①第一象限角是銳角;
②若cos(α+β)=-1,則sin(α+2β)+sinβ=0
函數(shù)y=sin(
π
4
-2x)的增區(qū)間是(kπ+
8
,kπ+
8
),k∈Z

④角α終邊經(jīng)過點(diǎn)(a,a),(a≠0)時,sinα+cosα=
2

⑤若y=sin(ωx)的周期為4π,則ω=
1
2

⑥若定義在R上函數(shù)f(x)滿足f(x+1)=-f(x),則y=f(x)是周期函數(shù).

查看答案和解析>>

同步練習(xí)冊答案