已知,則|a|+|a1|+|a2|+…+|a10|的值是( )
A.0
B.25
C.210
D.410
【答案】分析:利用二項(xiàng)展開(kāi)式的通項(xiàng)公式求出二項(xiàng)展開(kāi)式的通項(xiàng),判斷出系數(shù)的符號(hào),將絕對(duì)值去掉,然后將二項(xiàng)式中的字母賦值,求出和.
解答:解:展開(kāi)式的通項(xiàng)為
的奇次方的系數(shù)為負(fù)數(shù)
∴|a|+|a1|+|a2|+…+|a10|=a-a1+a2-…+a10
令二項(xiàng)式中的用-1代替得到
210=a-a1+a2-…+a10
故選C
點(diǎn)評(píng):解決二項(xiàng)展開(kāi)式的特定項(xiàng)問(wèn)題一般利用的工具是二項(xiàng)展開(kāi)式的通項(xiàng)公式;解決系數(shù)和問(wèn)題一般利用的方法是賦值法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素構(gòu)成兩個(gè)相應(yīng)的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a-b∈A}.其中(a,b)是有序數(shù)對(duì),集合S和T中的元素個(gè)數(shù)分別為m和n.若對(duì)于任意的a∈A,總有-a∉A,則稱集合A具有性質(zhì)P.
(Ⅰ)檢驗(yàn)集合{0,1,2,3}與{-1,2,3}是否具有性質(zhì)P并對(duì)其中具有性質(zhì)P的集合,寫(xiě)出相應(yīng)的集合S和T;
(Ⅱ)對(duì)任何具有性質(zhì)P的集合A,證明:n≤
k(k-1)2
;
(Ⅲ)判斷m和n的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1、已知集合A,B,全集∪,給出下列四個(gè)命題
(1)若A⊆B,則A∪B=B;
(2)若A∪B=B,則A∩B=B;
(3)若a∈(A∩CUB),則a∈A;
(4)若a∈CU(A∩B),則a∈(A∪B).
則上述正確命題的個(gè)數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
(
1
2
)
x
    x≤0
log2(x+2)    x>0
,a=f(-
3
),b=f(-
2
),c=f(
3
),則a,b,c大小關(guān)系為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泉州模擬)已知周期函數(shù)f(x)的定義域?yàn)镽,周期為2,且當(dāng)-1<x≤1時(shí),f(x)=1-x2.若直線y=-x+a與曲線y=f(x)恰有2個(gè)交點(diǎn),則實(shí)數(shù)a的所有可能取值構(gòu)成的集合為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知空間向量
a
=(a1,a2,a3),
b
=(b1,b2,b3),定義兩個(gè)空間向量
a
b
之間的距離為d(
a
b
)=
3
i=1
|bi-ai|.
(1)若
a
=(1,2,3),
b
=(4,1,1),
c
=(
11
2
,
1
2
,0),證明:d(
a
b
)+d(
b
,
c
)=d(
a
c

(2)已知
c
=(c1,c2,c3
    ①證明:若?λ>0,使
b
-
a
=λ(
c
-
b
),則d(
a
,
b
)+d(
a
,
c
)=d(
a
c
).
    ②若d(
a
,
b
)+d(
b
,
c
)=d(
a
,
c
),是否一定?λ>0,使
b
-
a
=λ(
c
-
b
)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案