(12分)已知雙曲線與橢圓有相同焦點,且經過點,
求該雙曲線方程,并求出其離心率、漸近線方程,準線方程。

,離心率,漸近線,準線

解析試題分析:橢圓的焦點為,設雙曲線方程為
過點,則,得,而,
,雙曲線方程為。

考點:雙曲線方程及其幾何性質
點評:本題求雙曲線方程還可利用定義先求得

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)

過拋物線焦點垂直于對稱軸的弦叫做拋物線的通徑。如圖,已知拋物線,過其焦點F的直線交拋物線于、 兩點。過、作準線的垂線,垂足分別為、.

(1)求出拋物線的通徑,證明都是定值,并求出這個定值;
(2)證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(滿分10分)(Ⅰ) 設橢圓方程的左、右頂點分別為,點M是橢圓上異于的任意一點,設直線的斜率分別為,求證為定值并求出此定值;
(Ⅱ)設橢圓方程的左、右頂點分別為,點M是橢圓上異于的任意一點,設直線的斜率分別為,利用(Ⅰ)的結論直接寫出的值。(不必寫出推理過程)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知雙曲線C的中心在原點,拋物線的焦點是雙曲線C的一個焦點,且雙曲線經過點,又知直線與雙曲線C相交于A、B兩點.
(1)求雙曲線C的方程;
(2)若,求實數(shù)k值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)如圖橢圓的上頂點為A,左頂點為B, F為右焦點, 過F作平行于AB的直線交橢圓于C、D兩點. 作平行四邊形OCED, E恰在橢圓上。

(Ⅰ)求橢圓的離心率;
(Ⅱ)若平行四邊形OCED的面積為, 求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知橢圓的對稱軸為坐標軸,焦點在軸上,離心率,分別為橢圓的上頂點和右頂點,且
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線與橢圓相交于兩點,且(其中為坐標原點),求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)已知拋物線的頂點在原點,對稱軸是x軸,拋物線上的點M(-3,m)到焦點的距離為5,求拋物線的方程和m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知直線l:y=2x-4交拋物線y2=4x于A,B兩點,試在拋物線AOB這段曲線上求一點P,使△PAB的面積最大,并求出這個最大面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知雙曲線C的中心在原點,拋物線的焦點是雙曲線C的一個焦點,且雙曲線經過點,又知直線與雙曲線C相交于A、B兩點.
(1)求雙曲線C的方程;
(2)若,求實數(shù)k值.

查看答案和解析>>

同步練習冊答案