已知正方形ABCD的邊長為2,E,F,G,H分別是邊AB,BC,CD,DA的中點.
(1)從C,D,E,F,G,H這六個點中,隨機選取兩個點,記這兩個點之間的距離的平方為,求概率P.
(2)在正方形ABCD內(nèi)部隨機取一點P,求滿足的概率.

(1) ;(2)

解析試題分析:(1)依題意由六個點中任取兩個點共有種情況,而其中兩個點之間的距離的平方大于4的情況有4種,所以符合題意的共有11種,即可得到結論.本小題考查古典概型的問題,“正難則反”,也是這類題中的一種解題方法.
(2)因為正方形ABCD內(nèi)部隨機取一點P,則滿足的概率,即需要求出點P所圍成的面積,通過求出一個扇形與兩個直角三角形的面積和,即可求得結論.
試題解析:(1)=
(2)這是一個幾何概型.所有點構成的平面區(qū)域是正方形的內(nèi)部,其面積是.滿足的點構成的平面區(qū)域是以為圓心,2為半徑的圓的內(nèi)部與正方形內(nèi)部的公共部分,它可以看作是由一個以為圓心、2為半徑、圓心角為的扇形的內(nèi)部與兩個直角邊分別為1和的直角三角形內(nèi)部構成.其面積是
所以滿足的概率為
考點:1.古典概型的知識.2.幾何概型的知識.3.正難則反推理的數(shù)學思想.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

設進入某商場的每一位顧客購買甲種商品的概率為0.5,購買乙種商品的概率為0.6,且購買甲種商品與購買乙種商品相互獨立,各顧客之間購買商品也是相互獨立的.
(1)求進入商場的1位顧客購買甲、乙兩種商品中的一種的概率;
(2)求進入商場的1位顧客至少購買甲、乙兩種商品中的一種的概率;
(3)記ξ表示進入商場的3位顧客中至少購買甲、乙兩種商品中的一種的人數(shù),求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

本著健康、低碳的生活理念,租自行車騎游的人越來越多.某自行車租車點的收費標準是每車每次租不超過兩小時免費,超過兩小時的收費標準為2元(不足1小時的部分按1小時計算).有人獨立來該租車點則車騎游.各租一車一次.設甲、乙不超過兩小時還車的概率分別為,;兩小時以上且不超過三小時還車的概率分別為,;兩人租車時間都不會超過四小時.
(1)求出甲、乙所付租車費用相同的概率;
(2)求甲、乙兩人所付的租車費用之和為隨機變量X,求X的分布列與數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一個袋中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4.
(1)從袋中隨機抽取兩個球,求取出的球的編號之和不大于4的概率;
(2)先從袋中隨機取一個球,該球的編號為m,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為n,求的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

年齡在60歲(含60歲)以上的人稱為老齡人,某地區(qū)老齡人共有35萬,隨機調(diào)查了該地區(qū)700名老齡人的健康狀況,結果如下表:

健康指數(shù)
 
2
 
1
 
0
 
-1
 
60歲至79歲的人數(shù)
 
250
 
260
 
65
 
25
 
80歲及以上的人數(shù)
 
20
 
45
 
20
 
15
 
其中健康指數(shù)的含義是:2表示“健康”,1表示“基本健康”,0表示“不健康,但生活能夠自理”,-1表示“生活不能自理”。
(1)估計該地區(qū)80歲以下老齡人生活能夠自理的概率。
(2)若一個地區(qū)老齡人健康指數(shù)的平均值不小于1.2,則該地區(qū)可被評為“老齡健康地區(qū)”.
請寫出該地區(qū)老齡人健康指數(shù)X分布列,并判斷該地區(qū)能否被評為“老齡健康地區(qū)”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙兩藥廠生產(chǎn)同一型號藥品,在某次質(zhì)量檢測中,兩廠各有5份樣品送檢,檢測的平均得分相等(檢測滿分為100分,得分高低反映該樣品綜合質(zhì)量的高低).成績統(tǒng)計用莖葉圖表示如下:


 

9 8
8
4  8 9
2 1 0
9
  6
 
(1)求;
(2)某醫(yī)院計劃采購一批該型號藥品,從質(zhì)量的穩(wěn)定性角度考慮,你認為采購哪個藥廠的產(chǎn)品
比較合適?
(3)檢測單位從甲廠送檢的樣品中任取兩份作進一步分析,在抽取的兩份樣品中,求至少有一份得分在(90,100]之間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知某種零件的尺寸X(單位:mm)服從正態(tài)分布,其正態(tài)曲線在(0,80)上是增函數(shù),在(80,+∞)上是減函數(shù),且f(80)=.
(1)求正態(tài)分布密度函數(shù)的解析式;
(2)估計尺寸在72mm~88mm之間的零件大約占總數(shù)的百分之幾.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

對一批共50件的某電器進行分類檢測,其重量(克)統(tǒng)計如下:

重量段
[80,85)
[85,90)
[90,95)
[95,100]
件數(shù)
5
a
15
b
規(guī)定重量在82克及以下的為“A”型,重量在85克及以上的為“B”型,已知該批電器有“A”型2件
(1)從該批電器中任選1件,求其為“B”型的概率;
(2)從重量在[80,85)的5件電器中,任選2件,求其中恰有1件為“A”型的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

江西某品牌豆腐食品是經(jīng)過、、三道工序加工而成的,、工序的產(chǎn)品合格率分別為、.已知每道工序的加工都相互獨立,三道工序加工的產(chǎn)品都為合格時產(chǎn)品為一等品;恰有兩次合格為二等品;其它的為廢品,不進入市場.
(1)生產(chǎn)一袋豆腐食品,求產(chǎn)品為廢品的概率;
(2)生產(chǎn)一袋豆腐食品,設為三道加工工序中產(chǎn)品合格的工序數(shù),求的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案