設(shè)函數(shù)f(x)=|2x-4|+1.
(Ⅰ)畫(huà)出函數(shù)y=f(x)的圖象:
(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范圍.
【答案】
分析:(I)先討論x的范圍,將函數(shù)f(x)寫(xiě)成分段函數(shù),然后根據(jù)分段函數(shù)分段畫(huà)出函數(shù)的圖象即可;
(II)根據(jù)函數(shù)y=f(x)與函數(shù)y=ax的圖象可知先尋找滿(mǎn)足f(x)≤ax的零界情況,從而求出a的范圍.
解答:解:(Ⅰ)由于f(x)=
,
函數(shù)y=f(x)的圖象如圖所示.
(Ⅱ)由函數(shù)y=f(x)與函數(shù)y=ax的圖象可知,
當(dāng)且僅當(dāng)a<-2或x≥
時(shí),函數(shù)y=f(x)與函數(shù)y=ax的圖象有交點(diǎn).
故不等式f(x)≤ax的解集非空時(shí),
a的取值范圍為(-∞,-2)∪[
,+∞).
點(diǎn)評(píng):本題主要考查了函數(shù)的圖象,以及利用函數(shù)圖象解不等式,同時(shí)考查了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.