12.設(shè)$\overrightarrow{a}$,$\overrightarrow$是任意的兩個(gè)向量,λ∈R,給出下面四個(gè)結(jié)論:
①若$\overrightarrow{a}$與$\overrightarrow$共線,則$\overrightarrow$=λ$\overrightarrow{a}$;
②若$\overrightarrow$=-λ$\overrightarrow{a}$,則$\overrightarrow{a}$與$\overrightarrow$共線;
③若$\overrightarrow{a}$=λ$\overrightarrow$,則$\overrightarrow{a}$與$\overrightarrow$共線;
④當(dāng)$\overrightarrow$≠0時(shí),$\overrightarrow{a}$與$\overrightarrow$共線的充要條件是有且只有一個(gè)實(shí)數(shù)λ=λ1,使得$\overrightarrow{a}$=λ1$\overrightarrow$.
其中正確的結(jié)論有②③④.

分析 通過舉反例判斷出①錯(cuò)誤;根據(jù)向量數(shù)乘運(yùn)算的定義判斷出②③正確;根據(jù)平面向量共線定理判斷出④正確.

解答 解:對于①:若$\overrightarrow{a}=\overrightarrow{0}$,則$\overrightarrow{a}$與$\overrightarrow$共線,但不存在實(shí)數(shù)λ,使得$\overrightarrow=λ\overrightarrow{a}$,故①不正確;
對于②③:根據(jù)向量數(shù)乘運(yùn)算的定義可知$\overrightarrow{a}$與$\overrightarrow$一定共線,故②③均正確;
對于④:滿足平面向量共線定理,故④正確.
故答案為:②③④

點(diǎn)評 本題考查了向量數(shù)乘運(yùn)算的定義以及平面向量共線定理,需注意$\overrightarrow{0}$是一個(gè)特殊向量,方向是任意的,和所有向量都是共線向量.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若函數(shù)f(x)=m•3x-x+3(m<0)在區(qū)間(0,1)上有零點(diǎn),則m的取值范圍為$-3<m<-\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若cos(π+α)=-$\frac{1}{2}$,$\frac{3}{2}$π<α<2π,則sin(3π-α)等于-$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列函數(shù)既是奇函數(shù),又在區(qū)間[-1,1]上單調(diào)遞減的是( 。
A.f(x)=sinxB.f(x)=-|x+1|
C.$f(x)=ln\frac{2-x}{2+x}$D.f(x)=$\frac{1}{2}$(ax+a-x),(a>0,a≠1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖為一個(gè)觀覽車示意圖.該觀覽車圓半徑為4.8m,圓上最低點(diǎn)與地面距離為0.8m,60秒轉(zhuǎn)動(dòng)一圈.圖中OA與地面垂直,現(xiàn)以O(shè)A為始邊,逆時(shí)針轉(zhuǎn)動(dòng)θ角到OB,設(shè)B點(diǎn)與地面的距離為h.
(1)求h與θ的函數(shù)解析式;
(2)設(shè)從OA開始轉(zhuǎn)動(dòng),經(jīng)過t秒到達(dá)OB,求h與t的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知x2>x${\;}^{\frac{1}{2}}$,則x的取值范圍是( 。
A.RB.x<1C.x>0D.x>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在等比數(shù)列{an}中,已知a3=2,a7=6,則公比q=$±\root{4}{3}$,a15=54,a20=±162$\root{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)y=a1-x(a>0,a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線mx+ny-2=0(mn>0)上,則$\frac{3}{m}+\frac{1}{n}$的最小值為2+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.過點(diǎn)P(2,2)作直線l交x,y正半軸于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)|OA|+|OB|取到最小值時(shí),直線l的方程是( 。
A.x+y-4=0B.x-y+4=0C.2x+y-6=0D.x+2y-6=0

查看答案和解析>>

同步練習(xí)冊答案