已知點是F拋物線與橢圓的公共焦點,且橢圓的離心率為

(1)求橢圓的方程;

(2)過拋物線上一點P,作拋物線的切線,切點P在第一象限,如圖,設切線與橢圓相交于不同的兩點A、B,記直線OP,F(xiàn)A,FB的斜率分別為(其中為坐標原點),若,求點P的坐標.

 

【答案】

(1) (2).

【解析】

試題分析:(1)因為點F的坐標為,則有,

從而有,故橢圓方程為 4分

(2)設,得切線的斜率為,從而切線的方程為:

,得

則有

從而有,又

則有,而,故有,

,故,即得點P的坐標為. 10分

考點:本題考查了橢圓的方程及直線與橢圓的位置關系

點評:對于直線與圓錐曲線的綜合問題,往往要聯(lián)立方程,同時結合一元二次方程根與系數(shù)的關系進行求解;而對于最值問題,則可將該表達式用直線斜率k表示,然后根據(jù)題意將其進行化簡結合表達式的形式選取最值的計算方式

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•浦東新區(qū)二模)(1)設橢圓C1
x2
a2
+
y2
b2
=1
與雙曲線C29x2-
9y2
8
=1
有相同的焦點F1、F2,M是橢圓C1與雙曲線C2的公共點,且△MF1F2的周長為6,求橢圓C1的方程;
我們把具有公共焦點、公共對稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”.
(2)如圖,已知“盾圓D”的方程為y2=
4x            (0≤x≤3)
-12(x-4)  (3<x≤4)
.設“盾圓D”上的任意一點M到F(1,0)的距離為d1,M到直線l:x=3的距離為d2,求證:d1+d2為定值; 
(3)由拋物線弧E1:y2=4x(0≤x≤
2
3
)與第(1)小題橢圓弧E2
x2
a2
+
y2
b2
=1
2
3
≤x≤a
)所合成的封閉曲線為“盾圓E”.設過點F(1,0)的直線與“盾圓E”交于A、B兩點,|FA|=r1,|FB|=r2且∠AFx=α(0≤α≤π),試用cosα表示r1;并求
r1
r2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(1)設橢圓C1數(shù)學公式與雙曲線C2數(shù)學公式有相同的焦點F1、F2,M是橢圓C1與雙曲線C2的公共點,且△MF1F2的周長為6,求橢圓C1的方程;
我們把具有公共焦點、公共對稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”.
(2)如圖,已知“盾圓D”的方程為數(shù)學公式.設“盾圓D”上的任意一點M到F(1,0)的距離為d1,M到直線l:x=3的距離為d2,求證:d1+d2為定值;
(3)由拋物線弧E1:y2=4x(0數(shù)學公式)與第(1)小題橢圓弧E2數(shù)學公式數(shù)學公式)所合成的封閉曲線為“盾圓E”.設過點F(1,0)的直線與“盾圓E”交于A、B兩點,|FA|=r1,|FB|=r2且∠AFx=α(0≤α≤π),試用cosα表示r1;并求數(shù)學公式的取值范圍.

查看答案和解析>>

同步練習冊答案