我們把焦點相同,且離心率互為倒數(shù)的橢圓和雙曲線稱為一對“相關(guān)曲線”.已知、是一對相關(guān)曲線的焦點,是它們在第一象限的交點,當(dāng)時,這一對相關(guān)曲線中雙曲線的離心率是(  )
                                     
A

試題分析:設(shè)F1P=m,F(xiàn)2P=n,F(xiàn)1F2=2c,由余弦定理4c2=m2+n2-mn,設(shè)a1是橢圓的長半軸,a1是雙曲線的實半軸,由橢圓及雙曲線定義,得m+n=2a1,m-n=2a1,由此能求出結(jié)果.解:設(shè)F1P=m,F(xiàn)2P=n,F(xiàn)1F2=2c,由余弦定理得(2c)2=m2+n2-2mncos60°,即4c2=m2+n2-mn,設(shè)a1是橢圓的長半軸,a1是雙曲線的實半軸,由橢圓及雙曲線定義,得m+n=2a1,m-n=2a1,∴m=a1+a2,n=a1-a2,將它們及離心率互為倒數(shù)關(guān)系代入前式得a12-4a1a2+a12=0, a1=3a2,e1•e2= 解得e2=.故選A.
點評:本題考查雙曲線和橢圓的簡單性質(zhì),解題時要認真審題,注意正確理解“相關(guān)曲線”的概念.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓E:)離心率為,上頂點M,右頂點N,直線MN與圓相切,斜率為k的直線l經(jīng)過橢圓E在正半軸的焦點F,且交E于A、B不同兩點.
(1)求E的方程;
(2)若點G(m,0)且| GA|=| GB|,,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)分別為雙曲線的左右焦點,點P在雙曲線的右支上,且,到直線的距離等于雙曲線的實軸長,則該雙曲線的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點O和點F分別為雙曲線 的中心和左焦點,點P為雙曲線右支上的任意一點,則的最小值為(  )
A.-6B.-2C.0D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

極坐標(biāo)系與直角坐標(biāo)系有相同的長度單位,以原點為極點,以正半軸為極軸,已知曲線的極坐標(biāo)方程為,曲線的參數(shù)方程是為參數(shù),,射線與曲線交于極點外的三點
(Ⅰ)求證:;
(Ⅱ)當(dāng)時,兩點在曲線上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線的離心率為,右準(zhǔn)線方程為。
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線與雙曲線C交于不同的兩點A,B,且線段AB的中點在圓上,求實數(shù)m的值。  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線的極坐標(biāo)方程是,以極點為原點,極軸為軸正方向建立平面直角坐標(biāo)系,直線的參數(shù)方程是:(為參數(shù)).
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線交于,兩點,點的直角坐標(biāo)為,若,求直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知是拋物線的焦點,上的兩個點,線段AB的中點為,則的面積等于              

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知兩定點E(-2,0),F(2,0),動點P滿足,由點P向x軸作垂線段PQ,垂足為Q,點M滿足,點M的軌跡為C.
(1)求曲線C的方程
(2)過點D(0,-2)作直線與曲線C交于A、B兩點,點N滿足
(O為原點),求四邊形OANB面積的最大值,并求此時的直線的方程.

查看答案和解析>>

同步練習(xí)冊答案