已知直線l1:y=x,若直線l2⊥l1,則直線l2的傾斜角為( 。
A、
π
4
B、kπ+
π
4
(k∈Z)
C、
4
D、kπ+
4
(k∈Z)
分析:兩條直線垂直且斜率存在,則斜率的乘積為-1.
解答:解:∵l2⊥l1,
∴k1•k2=-1,又k1=1
∴k2=-1
∴傾斜角為
4
,故選C.
點(diǎn)評:傾斜角的范圍為【0,π)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:y=x,l2:y=2x,l3:y=-x+6和l4:y=0,由l1,l2,l3圍成的三角形區(qū)域記為D,一質(zhì)點(diǎn)隨機(jī)地落入由直線l2,l3,l4圍成的三角形區(qū)域內(nèi),求質(zhì)點(diǎn)落入?yún)^(qū)域D內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:y=-x+2a與直線l2:y=(a2-2)x+2平行,則a的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:y=x和直線l2:y=-x,動(dòng)點(diǎn)M到x軸的距離小于到y(tǒng)軸的距離,且M到l1,l2的距離之積為常數(shù)4.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)過點(diǎn)N(3,0)的直線L與曲線C交與P、Q,若
PN
=2
NQ
,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年寧夏銀川一中高一(上)期末數(shù)學(xué)試卷(解析版) 題型:選擇題

已知直線l1:y=-x+2a與直線平行,則a的值為( )
A.
B.±1
C.1
D.-1

查看答案和解析>>

同步練習(xí)冊答案